
P-Lint: A Permission Smell Detector for Android
Applications

Colton Dennis, Daniel E. Krutz and Mohamed Wiem Mkaouer
Department of Software Engineering

Rochester Institute of Technology

Rochester, NY, USA

Email: {crd6283, dxkvse, mwmvse}@rit.edu

Abstract—Android is built upon a permission-based structure,
where apps require access to specific permissions in order to
carry out specific functionalities. While Android has provided a
set of best practices intended to aid the developer in properly
defining and manipulating these permissions on their source code,
developers do not always adhere to these guidelines. Although
some of the resulting issues may be minor and lead to slight
user confusion, other mistakes may create more serious privacy
and security related issues. We’ve defined improper usage of
these permission best practices to be permission smells to indicate
possible permissions related syntactic issues and have created a
tool P-Lint to assist in the identification of these smells on the
source code. P-Lint’s goal is to not only help developers create
better, more secure apps by providing guidance on properly using
permissions, but also in allowing researchers to better understand
the common permission smells through empirical analysis on
existing apps. P-Lint is publicly available on the project website:
https://p-lint.github.io

I. INTRODUCTION

Beginning with Android Marshmallow (API 23), developers

may now ask users to request permissions at run-time, and

users may choose to grant only some of the app’s requested

permissions. This significantly differs from previous versions

of Android where developers would only be allowed to ask

for permissions upon the installation of the app, and users

would have to accept the permissions in an all-or-nothing

fashion. Android introduced several permission ’best practices’

for using this new permissions model. Not adhering to some

of these rules can have more profound effects in comparison

with other rules.

A ’code smell’ is a symptom of a bad programming

practice, and not a syntactic error, i. e., not that an issue

necessarily exists. Similarly, we define permission smells,

as an indication of a permission-related bad programming

practice. Some examples of permission smells include not

adhering to Google’s permission best practices guideline and

misusing the checkSelfPermission(), requesting permissions

when Intents are advised to be used, or possible misuse

of custom permissions. We have designed and implemented

P-Lint1 (Permission-Lint) to detect permission smells. The

primary contributions of P-Lint are:

1https://p-lint.github.io

• Assist developers with developing better permission-

related statements and methods, and help them adhere

to defined standards.

• Provide a tool for researchers to analyze a large number

of existing apps for permissions related bad practices,

which may have led to potential privacy or security

vulnerabilities.

To our knowledge, this is the first tool that analyzes An-

droid apps for proper permissions usage from a standards

perspective. P-Lint differs from tools such as PScout [2] and

Stowaway [3] since it does not focus on merely identifying the

permission-gap, but in performing permissions checks based

on best practices.

II. TOOL OVERVIEW

We designed P-Lint to be both easy to adopt and use.

P-Lint begins by reverse engineering the Android apk file

using existing tools including Apktool2, dex2jar3, and JD-

Core-java4. An overview of P-Lint is shown in Figure 1.

Fig. 1. P-Lint Overview

Using static analysis, P-Lint examines the reverse engi-

neered code for the defined best practices use cases. Since

2https://ibotpeaches.github.io/Apktool/
3https://sourceforge.net/projects/dex2jar/
4https://github.com/nviennot/jd-core-java

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

151

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

215

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

219

Author Preprint

changes to the Android permission model and best practices

guidelines are a certainty, we created P-Lint to be as easily

extensible as possible and will maintain the tool to account

for changes in Android.
P-Lint’s results are stored in an html file to make the results

easy to interpret, and are also stored in a database to make the

results easy for researchers to query. Some of the permission

smells detected by P-Lint include:

1) Improper use of custom permissions

2) Requesting permissions when Intents could be used

3) Improper usage of functionality such as checkSelfPer-
mission() and shouldShowPermissionRationale()

4) Inconsistent or confusing rationales

To illustrate an example of these bad permission practices,

we consider the following example:

Missing checkSelfPermission(): Prior to executing code that

requires a particular permission, the method checkSelfPermis-
sion() needs to be called to check if the user has granted

permission for the app to access the Android functionality that

falls under this permission. If the user has not as yet approved,

denied this permission request on a prior occasion or even

reverted the approved permission there is a high chance of

the app crashing or not performing it’s intended functionality.

requestPermissions() can be called if checkSelfPermission()
returns false.

/ / R e q u e s t p e r m i s s i o n a c c e s s e v e r y t i m e
void someMethod () {

A c t i v i t y C o m p a t . r e q u e s t P e r m i s s i o n s (t h i s , new S t r i n g
[{M a n i f e s t . p e r m i s s i o n .READ CALENDAR} ,
PERMISSION READ CALENDAR) ;

}

Listing 1. Failure to Use CheckSelfPermission

For instance, the following code snippet in Listing 1 demon-

strates the usage of PERMISSION READ CALENDAR in-

side a given function with a developer’s assumption that the

permission has been eventually granted. This assumption may

be incorrect if the user does not grant the app to access

that permission during its runtime. In case of permission

denial, this function will eventually trigger a runtime error. A

proper usage of checkSelfPermission() is shown in Listing 2.

The developer is handling the user’s binary response to the

permission request. If it is granted then the app can eventually

access the permission and use it to fulfill its functionality.
The method onRequestPermissionsResult() can be overrid-

den to handle the users response to Android’s permission

request. Not overriding this method is not a permission smell,

but it helps from a usability point of view as an appropriate

message can be shown to the user or functionality disabled

if the user does not approve a permission request. Further

examined use cases, relevant standards documentation and

initial results are available on the project’s website: https:
//p-lint.github.io.

void someMethod () {
i f (A c t i v i t y C o m p a t . c h e c k S e l f P e r m i s s i o n (t h i s ,

M a n i f e s t . p e r m i s s i o n .READ CALENDAR)
!= PackageManager . PERMISSION GRANTED

) {
/ / Calendar p e r m i s s i o n has n o t been g r a n t e d .

R e q u e s t Calendar P e r m i s s i o n
A c t i v i t y C o m p a t . r e q u e s t P e r m i s s i o n s (t h i s , new

S t r i n g []{ M a n i f e s t . p e r m i s s i o n .READ CALENDAR
} ,PERMISSION READ CALENDAR) ;

}
e l s e {

/ / Calendar p e r m i s s i o n s i s a l r e a d y a v a i l a b l e .
S t a r t u s i n g t h e Calendar API

}
}

void o n R e q u e s t P e r m i s s i o n s R e s u l t (i n t rc , S t r i n g [] p ,
i n t [] g r a n t R e s u l t s) {

i f (g r a n t R e s u l t s . l e n g t h > 0
&& g r a n t R e s u l t s [0] == PackageManager

. PERMISSION DENIED) {
/ / Handle t h e p e r m i s s i o n deny a c t i o n

}
e l s e {

/ / Use t h e Calendar
}
}

Listing 2. Correct Use of CheckSelfPermission

III. ENABLED RESEARCH

Although our findings are preliminary, P-Lint has already

yielded some interesting results. For instance, when investi-

gating 40 Android apps (dataset available online), we found

79 instances of the apps not utilizing the checkSelfPermis-
sion() function, which goes against the Android best practices

guide [1] and could potentially lead to functional issues. P-

Lint may be used in future research studies on large numbers

of popular Android apps to answer some of the following

research questions:

1) Are developers properly adhering to the defined best

practices [1] for permission?

2) Are developers properly using updated functionality

such as shouldShowRequestPermissionRationale() and

what rationale are they providing? Does the rationale

make sense and properly reflect the permission?

3) How frequently are developers requesting permissions,

when they should have been using intents?

4) Do apps properly utilize the checkSelfPermission()
method when permission requests are made

5) Are custom permissions being properly used?

REFERENCES

[1] Permissions best practices. https://developer.android.com/training/permissio
ns/best- practices.html.

[2] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 217–228.
ACM, 2012.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 627–638. ACM, 2011.

152216220

Author Preprint

