
One Thousand and One Stories:
A Large-Scale Survey of Software Refactoring

Yaroslav Golubev

JetBrains Research

Saint Petersburg, Russia

yaroslav.golubev@jetbrains.com

Zarina Kurbatova

JetBrains Research

Saint Petersburg, Russia

zarina.kurbatova@jetbrains.com

Eman Abdullah AlOmar

Rochester Institute of Technology

Rochester, United States

eman.alomar@mail.rit.edu

Timofey Bryksin

JetBrains Research

Higher School of Economics

Saint Petersburg, Russia

timofey.bryksin@jetbrains.com

Mohamed Wiem Mkaouer

Rochester Institute of Technology

Rochester, United States

mwmvse@rit.edu

ABSTRACT
Despite the availability of refactoring as a feature in popular IDEs,

recent studies revealed that developers are reluctant to use them,

and still prefer the manual refactoring of their code. At JetBrains,

our goal is to fully support refactoring features in IntelliJ-based

IDEs and improve their adoption in practice. Therefore, we start by

raising the following main questions. How exactly do people refac-

tor code? What refactorings are the most popular? Why do some

developers tend not to use convenient refactoring tools provided

by modern IDEs?

In this paper, we investigate the raised questions through the

design and implementation of a survey targeting 1,183 users of

IntelliJ-based IDEs. Our quantitative and qualitative analysis of the

survey results shows that almost two-thirds of developers spend

more than one hour in a single session refactoring their code; that

refactoring types vary greatly in popularity; and that a lot of devel-

opers would like to know more about IDE refactoring features but

lack the means to do so. These results serve us internally to support

the next generation of refactoring features, as well as can help our

research community to establish new directions in the refactoring

usability research.

CCS CONCEPTS
• Software and its engineering → Software evolution; Main-
taining software.

KEYWORDS
Refactorings, IDE Refactoring Features, Software Maintenance

ACM Reference Format:
Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey

Bryksin, and Mohamed Wiem Mkaouer. 2021. One Thousand and One

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Stories: A Large-Scale Survey of Software Refactoring. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Refactoring [12] is traditionally defined as the process of improving

the internal code structure without altering its external behavior.

Since this practice had been introduced to a wide audience of soft-

ware engineers, it has become a crucial tool tomaintain high-quality

software and to reduce its technical debt. Several refactoring types,

involving renaming, moving, and extracting elements have been

implemented as actionable tools in modern Integrated Development

Environments (IDEs), providing developers with an automatic and

safe way to apply these predefined code transformations [32, 33, 36].

Even though all modern IDEs usually have a top-level menu

with various options devoted to refactoring, several recent surveys

report that developers are often reluctant to adopt these features

and still manually refactor their code [17, 35]. Despite the high-

level maturity of IDEs and the safety and interactivity of their

tools, manual refactoring is still widely adopted regardless of its

drawbacks and error-proneness.

While several studies have recently highlighted the lack of au-

tomated refactoring usage [1, 15, 17, 30, 35, 40], little is known

regarding the reasons hindering the widespread adoption of auto-

mated refactoring, especially when it is offered as a built-in feature

in modern IDEs. Furthermore, existing studies were limited by in-

vestigating only a few types of refactoring, as well as by the number

of developers surveyed.

The goal of this paper is to share the results of a large-scale sur-

vey about refactoring conducted by JetBrains Research, to reflect

on what refactorings developers actually use, as well as to raise

the awareness of the current usability challenges that developers

face when they use the IDE to refactor their code. In particular, we

designed a survey of 20 questions to investigate several dimensions

related to (1) general background information about respondents,

(2) developers’ familiarity with refactoring in general, (3) how de-

velopers tend to refactor their code, (4) the extent to which they are

familiar with the IDE built-in refactoring functionalities, (5) along

with their degree of adoption and thoughts on specific refactor-

ing features of IDEs, namely the Undo and Preview. Our survey

was sent to paid subscribers of the IntelliJ Platform-based IDEs

ar
X

iv
:2

10
7.

07
35

7v
1

 [
cs

.S
E

]
 1

5
Ju

l 2
02

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin, and Mohamed Wiem Mkaouer

(IntelliJ IDEA, PyCharm, WebStorm, and others), and we received

1,183 complete responses, achieving a response rate of 6.0% and a

completion rate of 88.9%.

We provide the refactoring community with a variety of insights

that are currently being investigated by JetBrains IDE development

teams to plan future enhancements of the refactoring tools. The

raw data of the survey is available online.
1
Notably, the survey has

revealed the following:

• While refactoring is a regular and recurrent practice sup-

porting the software development cycle, two-thirds of re-

spondents confirmed that their refactoring sessions can take

up to an hour or even longer.

• Some refactorings, such as Rename and Extract entities, are
more popular and intuitive than others, such as Pull Up and

Push Down entities. Despite the existence of built-in refac-

toring tools, some developers opt for refactoring their code

using manual practices: for instance, Find and Replace is

popular for Renaming, Copy and Paste is typically used for

Moving.
• The familiarity of developers with IDE refactoring features

varies from one refactoring type to another. Also, the adop-

tion of an IDE feature correlates with the popularity of the

refactoring itself. For instance, Rename refactoring has been

found to be the most popular one, and its built-in Rename

tool is also heavily used. This is in contrast with Pull Up /
Push Down refactorings, which are the least popular, and con-
sequently their corresponding tools are used significantly

less frequently.

• The possibility of Preview and Undo helps in consolidating

the usage of refactoring tools, as developers tend to trust code

transformations more and understand their impact better.

Nevertheless, these functionalities can be considered too

complex when developers are performing what they believe

to be simple and intuitive refactorings.

2 RELATEDWORK
Some refactoring techniques and formalisms to guarantee program

preservation have been reported in an extensive survey study by

Mens and Tourwe [20]. The authors discussed the existing literature

in terms of refactoring activities and their automation techniques.

They reported different types of software artifacts being refactored,

along with existing refactoring tool support, and the impact of

refactoring in the software process. Murphy-Hill & Black [22] sur-

veyed 112 Agile Open Northwest conference attendees and found

that refactoring tools are underused by professional programmers.

At Microsoft, Kim et al. [17] surveyed 328 professional software

engineers to investigate when and how they do refactoring. When

surveyed, the developers mentioned the main benefits of refactor-

ing to be: improved readability (43%), improved maintainability

(30%), improved extensibility (27%), and fewer bugs (27%). When

asked what provokes them to refactor, the main reason provided

was poor readability (22%). Only one code smell (i.e., code duplica-
tion) was mentioned (13%). Sharma et al. [34] surveyed 39 software

architects to ask about the problems they are facing whenever they

refactor their systems and the limitations of existing refactoring

1
Raw data of the survey: https://zenodo.org/record/4923175

tools they use. Their main findings are: (1) fear of breaking the code

restricts developers from adopting refactoring techniques, (2) lack

of awareness of the impact of refactoring on code quality is a major

obstacle to refactoring tasks, and (3) developers feel reluctant to

adopt refactoring because it might result in wasting their resources.

Oliveira et al. [25] surveyed 107 developers about their refactoring

output, using 7 refactoring types applied to pilot software systems.

They found significant differences in the outputs for the same tasks

due to the differences in the IDE refactorings they used. In their

extended work [26], Oliveira et al. confirmed that refactoring imple-

mentations of various IDEs (Eclipse, NetBeans, etc.) have differences

in all refactoring types. They also reported that these IDEs have

different input parameters to apply refactorings.

Our study complements the ongoing effort of previous studies

by providing more in-depth insights regarding the challenges faced

by developers, specifically when using modern IDEs. Our study

is also the first to attract 1,183 developers, becoming the largest

refactoring survey in literature.

3 STUDY DESIGN
3.1 Pilot Survey
Since this survey was going to be distributed to a wide range of

participants, it was critical to ensure that our questions properly

convey the points we are seeking answers to. Therefore, we per-

formed a pilot study for the purpose of refining our questions and

survey protocol. The pilot version of the survey contained the

following questions: (1) What is your experience in software engi-

neering and what programming languages do you regularly use?

(2) Provided a list of popular refactorings, please select whether

you know each one of them in general and as an IDE feature. (3)

For the same refactorings, please select which ones you use and

how often. (4) What are your general thoughts about the current

state of automatic refactorings? (5) What are your negative experi-

ences with automatic refactorings? (6) If you had cases when you

wanted to perform a refactoring, but decided not to, what were

the reasons? (7) How often do you use the Preview IDE feature

when performing a refactoring? What are your main reasons for

using it? (8) How often do you use the Undo action after applying

a refactoring? What are your main reasons for using it?

The pilot version of the survey was reviewed by the members

of the Market Research and Analytics team at JetBrains, who are

experienced with survey design and execution. We have received

the following feedback to refine the questions.

• In questions (2) and (3), we immediately show a list of refac-

toring names to respondents, thus possibly alienating de-

velopers who may perform refactorings but do not know

them by their names. Instead, we should tune our questions

according to the participants’ familiarity with refactorings.

• It is better to strictly divide questions about refactoring activ-

ities in general and questions about IDE refactoring features

in order not to confuse less experienced participants.

• To avoid generic responses, it is recommended to tie respon-

dents to a specific time frame: asking about their refactoring

experience during the past month, during one programming

session, etc.

https://zenodo.org/record/4923175

One Thousand and One Stories: A Large-Scale Survey of Software Refactoring Conference’17, July 2017, Washington, DC, USA

Table 1: The summary of survey questions. Grey numbers near certain questions indicate that the presence of this question
conditionally depends on another question, specified by the number

I. Background
Question 1 How many years of coding experience do you have?

Question 2 What programming languages do you regularly use?

II. Familiarity with refactorings
Question 3 In the past month, how often have you performed any code refactoring?

Question 4 (3) Have you renamed anything in your code or project structure in the past month?

Question 5 (3) Have you moved any code from one location in the project to another?

Question 6 (3) During this time, did you ever refactor code for an hour or more in a single session?

III. Refactoring approaches

Question 7 For the following scenarios, please select all the approaches you have used in the past month.

(Renaming a class, method, variable, or symbol / Extracting a method or a variable from existing code / Moving code to another file)
Question 8 (7) In these scenarios, what were your main reasons for not using the IDE refactoring feature?

Question 9 For the following scenarios, please select all the approaches you have used in the past month.

(Inlining a variable or method / Changing the signature of an existing function / Moving a method up or down the class hierarchy)
Question 10 (9) In these scenarios, what were your main reasons for not using the IDE refactoring feature?

IV. IDE refactoring features

Question 11
How familiar are you with the following IDE refactoring features?

(Rename file, class, method, symbol, etc. / Extract method, variable, component, etc. / Move /

Inline variable or method / Change signature / Pull Up or Push Down member)

Question 12 (11) Please think about the last several times you used IDE refactorings. How happy were you with the overall experience?

Question 13 (12) Please tell us a bit more about your experience.

Question 14 (11) How often do you undo or revert an IDE refactoring action because you’re unhappy with the result?

Question 15 (14) The last few times you undid or reverted an IDE refactoring feature, what were the reasons?

V. Previewing refactorings
Question 16 When refactoring the code, do you find it useful to preview all of your changes before applying them?

Question 17 (16) For what types of changes do you find this feature most useful?

Question 18 (16) What are your main reasons for wanting to see a refactoring preview?

Question 19 (16) What are your main reasons for not finding a preview useful?

VI. Final thoughts
Question 20 Please share any thoughts or feedback you have about using the IDE refactorings.

• Question (6) is too broad, it is better to split it into more

specific questions. Question (7) is restricted to participants

who use previews, whereas it would be also interesting to

learn the reasons for not using that feature.

This feedback allowed us to reformulate some questions and

consolidate others. The resulting survey was then approved by

the Market Research and Analytics team, and its questions are

enumerated in Table 1.

3.2 Final Survey
Now, let us describe all the research dimensions encapsulated in

the final version of the survey.

The complete list of questions is presented in Table 1. There

was a total of 20 questions in the survey: 9 single choice, 8 multi-

ple choice (in 4 of which a write-in Other answer was available),
and 3 open-ended. Also, since our survey targeted different groups

of developers, it contained conditional questions and one case of

branching. Conditional questions allow us to gather deeper insights

and target specific groups of respondents, and branching allows

tailoring questions to a specific group in case groups do not inter-

sect (for example, when some developers like a feature, and the

others do not). According to the survey methodology and the guide-

lines proposed by Kitchenham and Pfleeger [10, 14, 18], conditional

questions and branching ensure that respondents are asked only

those questions that apply to them while allowing us to gather

deeper insights. You can find more information about conditional

questions and branching in our supplementary data package [13].

Let us now briefly overview the main sections of the survey.

I Background. The first introductory section had just two basic

questions related to the respondent’s coding experience and

the programming languages they use.

II Familiarity with refactorings. The second section aimed to

determine the respondent’s familiarity with refactorings. We

asked them how often they have been recently refactoring code.

In case the respondents said that they do it rarely or never at

all, we followed up by asking how often they have renamed or

moved code elements to ensure that their previous selection

was not due to their unfamiliarity with the term refactoring.
Finally, we asked the respondents whether they have spent one

hour or more in a single session refactoring their code.

III Refactoring approaches. The third section was dedicated to

discovering whether developers actually carry out refactorings

with IDE refactoring tools or manually. In the cases when they

did not refactor using IDE tools, we asked a follow-up question

to inquire about the reasons for that.

IV IDE refactoring features. In the fourth section, we concen-

trated on the automatic refactoring tools of IDEs. We asked

the respondents how often they use each type of refactoring

features (e.g., Rename). If at least one refactoring feature was
regularly used, we presented more questions to gauge their

satisfaction with these features. We also inquired about how

often respondents had to undo an applied refactoring.

V Previewing refactorings. The fifth section discussed the us-

age of previews when refactoring code.We divided respondents

into those who find previews useful and those who do not, and

then dived deeper into the reasons for both of these views.

Conference’17, July 2017, Washington, DC, USA Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin, and Mohamed Wiem Mkaouer

VI Final thoughts. Finally, in the last section of the survey, we

gave the respondents the opportunity to share any refactoring-

related feedback.

3.3 Surveying Process
We selected respondents from the list of paid subscribers of IntelliJ-

based IDEs (IntelliJ IDEA, PyCharm, CLion, WebStorm, etc.) [31]

who had previously agreed to receive invitations to such surveys

by email. In total, the mailing list consisted of 20,000 developers,

compiled evenly from users of different IntelliJ-based IDEs. This al-

lowed us to mitigate possible skews towards a given IDE or specific

languages and inquire about broader aspects of refactoring.

19,860 emails were successfully delivered, respondents were

given three weeks to fill the survey. In the end, we received 1,330

responses, out of which 1,183 were complete. This corresponds

to a response rate of 6.0% and a completion rate of 88.9%. We

considered the obtained response rate to be satisfactory, as it is

close to other studies in the field that had reported a response rate

between 5.7% [29] and 7.9% [19]

The first two questions in the survey gave us some background

information on the developers. The question about coding experi-

ence (Question 1) demonstrated that 27.8% of the participants have

more than 16 years of experience, a total of 48.1% have more than

10 years of experience, and as much as 79% have more than 5 years

of experience. Only 2 respondents (0.2%) in our survey answered

I do not have any coding experience, and were therefore taken to the

end of the survey.

Question 2 allowed our participants to select up to 3 languages

that they are familiar with. The most popular languages by the

percentage of respondents in our survey are: JavaScript (46.6%),

Python (28.3%), PHP (27.2%), Java (24.4%), and SQL (21.4%). These

languages constitute some of the most popular programming lan-

guages used in different software engineering domains [11]. Among

other languages selected by the participants are Typescript, C/C++,

C#, Go, Ruby, and others.

Overall, the results of this survey represent the opinions of more

than a thousand developers with a high average experience in

different popular programming languages, which can serve as a

practical window to the current general state of refactoring usage.

4 RESULTS
In this section, we describe the results of the survey, divided into

five parts, corresponding to sections II–VImentioned in Section 3.2

and shown in Table 1.

Because of the conditional questions and branching, questions

in our survey have a different number of respondents answering

them. To avoid creating confusion with numbers not summing

up, we decided to present the results of all questions in the form

of percentages with respect to the number of respondents who

answered them. For all survey questions, the number of respondents

is explicitly stated in captions of the figures and tables. Also, to

avoid confusion in similar terms, we mark refactorings in general
in cursive and mark IDE refactoring features in small caps.

To process the open-ended questions, we used the open coding

technique based on guidelines provided by Cruzes et al. [9]. For

each question, firstly, the list of possible categories of answers was

compiled. This was done independently by the first two authors

in two iterations. On the first iteration, each author studied the re-

sponses and gave them possible labels, and on the second iteration,

each author reduced the overlap between the labels and drew up

the final list of categories. After this, the first two authors compared

their lists of obtained categories and compiled the final list together.

Finally, using this final list, they independently did a third iteration

and labeled each response (no category, one specific category, or

several categories in the case of long responses). After this, they

compared and discussed the resulting labeling. In all the question-

able cases, the authors had a discussion, until a perfect consensus

was reached. This was done for all open-ended questions.

4.1 Familiarity with Refactorings
We started the main body of the survey with the basic Question 3
that asked how often the respondents performed any code refac-

toring recently. Figure 1 shows the breakdown of the answers. It

can be seen that refactoring is an omnipresent practice in software

development: 40.6% of developers indicated that they refactor code

Almost every day and 36.9% more said that they refactor code Every
week. Only about 20% of users said that they refactor code Once or
twice a month, and just 2.5% Never refactored code.

Never
2.5%

Once or twice a month
20%

Every week
36.9%

Almost every day
40.6%

Figure 1: The answers to Question 3: In the past month, how
often have you performed any code refactoring? (Out of 1,181
respondents)

However, it might be the case that developers may have a dif-

ferent perception of the word refactor. To account for this, if the

participant selected Once or twice a month or Never in the previous

question (266 respondents), we additionally showed them Ques-
tions 4 and 5, asking whether they renamed or moved anything

in the code recently. We found out that 84.2% of these 266 respon-

dents renamed entities in the code and 78.2% of them moved code

elements. Overall, only 14 respondents did not answer positively to

either of these questions, and therefore, we did not consider their

answers further, because they are not a target audience for any

questions about refactorings. The remaining survey considered the

answers of all the remaining 1,167 participants.

Respondents who are familiar with refactoring (1,145 respon-

dents) were exposed to the last question in this block, Question
6, asking whether they have been recently refactoring for an hour

or more in a single session. The results are presented in Figure 2.

Surprisingly, almost two-thirds of developers answered positively.

One Thousand and One Stories: A Large-Scale Survey of Software Refactoring Conference’17, July 2017, Washington, DC, USA

No
25.9%

Yes
66.3%

Don't remember
7.8%

Figure 2: The answers to Question 6: During this time, did
you ever refactor code for an hour or more in a single session?
(Out of 1,145 respondents)

While it is widely accepted that refactoring helps to enforce

better design practices or to cope with design defects [12], recent

studies have shown that developers interleave refactoring activ-

ities with other maintenance and development-related tasks in

practice, including feature updates, bug fixes, and API types mi-

gration [2, 4, 16, 23, 28, 38]. Yet, little is known about the overhead

that refactorings exhibit, especially when they are executed in con-

junction with these development tasks. According to the survey

results, the majority of developers state that they spent over an

hour while refactoring their code, which is interesting, considering

that refactoring tools were designed to be executed independently,

applying small edits. This finding was interesting to us, and we

plan to monitor how refactoring features are being used for such

time frame in the future. Researchers should also pay close atten-

tion to such refactoring sessions and study whether our current

refactoring tools remain efficient during continuous refactoring.

Summary: Intuitively, refactorings are a key element in the
software development cycle, according to the participants of the
survey. Nearly four out of five developers indicated that they
refactored code every week or even almost every day recently.
Interestingly, two-thirds of respondents said that they had refac-
toring sessions of an hour or longer during this time.

4.2 Refactoring Approaches
The next section in the survey aimed to analyze how developers

execute their intended refactoring, and the degree of their reliance

on the IDE tools to do that. The results of survey questions corre-

sponding to this investigation are presented in Figure 3.

The first question (Question 7) aimed to verify whether devel-

opers refactor code using built-in automated tools of IDEs or they

perform it manually. First, we clustered refactorings into 3 main

categories, namely the Rename, the Extract, and the Move cate-

gories. Each category can target various code entities (e.g., rename

class, method, attribute, etc.). Then, we designed our question to

let respondents choose for each refactoring category whether they

refactor their code using the appropriate IDE feature, or they rely

on intuitive programming practices, such as Copy and Paste or Find
and Replace. Since developers may select more than one choice, we

report the percentage of developers selecting each option for each

refactoring category. All percentages are showcased in Figure 3a.

In general, it can be seen that a significant number of respon-

dents use IDE features to perform refactorings. Rename is in the

big lead, with as much as 85.8% of participants saying that they

used the IDE feature for it. This is a strong indicator that Rename
refactorings are implemented well as an IDE feature, their usage is

intuitive, and they produce stable, reliable output. However, since

renaming is a relatively simple change (at least compared to other

refactorings), almost half the respondents also used the Find and
Replace feature to locate all instances of a given code element and

rename it. Also, Rename can be seen as the most universal of all

the studied refactorings, because virtually no one said that they did

not encounter a scenario for its use.

As for the Extract refactoring, significantly fewer people used

the IDE feature, about 54.7%, especially when compared to the

Rename feature. However, the Extract feature is still solicited by

more than half of the respondents. Also, 10.7% of the respondents

indicated that they did not have a scenario where they had to

extract something. These findings are in line with the recent study

of Alcocer et al. [1] where the authors reported the existence of

certain usability issues of the Extract Method refactoring when

using IntelliJ IDEA.

Finally, Moving code appears to be the first refactoring where

the use of the IDE feature is not the most popular answer. 38.6% of

developers answered that they use the IDE feature and more than

half the respondents (57.5%) answered that they simply Copy and
Paste. Occasionally, moving elements can be basic, and in this case,

simply copying and pasting suffices. However, when the move is

more difficult, when it involves dependencies and complex rela-

tionships between objects, then the IDE feature might be simpler

to use. Still, in general, Move refactorings are almost as popular as

Renames, with only 4.4% of participants saying that they did not

encounter this scenario.

It is also alarming to notice that for all three refactorings, about

one-third of respondents performed the refactoring by manual

editing (typing).

In the next Question 8, we selected all respondents who an-

swered Used Find and Replace, Used Copy and Paste, or Edited man-
ually for at least one refactoring (1,014 respondents), and asked

them about the reasons for not using the IDE refactoring features.

The results are presented in Figure 3b.

Two answers are the most popular. 48.4% of respondents said

that they were not sure that the automated refactoring would

work the way they wanted. This falls in line with the popular

notion that developers often do not trust automated refactoring

tools [6, 7, 23, 35, 39]. Also, 45.6% of respondents said that certain

refactorings were easier to conduct manually. This puts the results

of the previous question into perspective: a lot of developers use

“manual” ways of conducting refactorings, because sometimes it is

just more straightforward to do so. Therefore, one of the main take-

aways for our IDE development teams is the importance of making

the refactoring tools simpler and more intuitive. Since the Rename

feature is the most successful one in terms of adoption, analyzing

how developers activate it would help in understanding its success,

and potentially replicating it to other types of refactorings.

Fewer participants selected other options: 24.7% said that they

did not think about using IDE refactoring tools at the time, 21.7%

said that they did know about the IDE tools, and 15.9% said that

Conference’17, July 2017, Washington, DC, USA Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin, and Mohamed Wiem Mkaouer

85.8% 46.2% 21.3% 29.8% 0.3%

54.7% 20.7% 30.4% 33.2% 10.7%

38.6% 12.2% 57.5% 30.8% 4.4%

Used IDE

refactoring

Used Find

and Replace

Used Copy

and Paste

Edited

manually

Didn't have

this

scenario

Renaming a

class, method,

variable, or

symbol

Extracting a

method or a

variable from

existing code

Moving code to

another file

(a) The answers to Question 7: For the following scenarios, please se-
lect all the approaches you have used in the past month. Several ap-
proaches can be selected for each refactoring, the percentages show
the proportion of respondents who chose each option. (Out of 1,167
respondents)

45.6%

21.7%

24.7%

48.4%

15.9%

11.3%

It was easier to do it

manually

I didn't know about IDE

refactorings

I didn't think about using

IDE refactorings at the

time

I was not sure the

automated refactoring would

work the way I wanted

I had had some bad

experiences with IDE

refactorings before

Other

0 10 20 30 40 50

Respondents (%)

(b) The answers to Question 8: In these scenarios (Renaming, Extract-
ing, Moving), what were your main reasons for not using the IDE
refactoring feature? (Out of 1,014 respondents)

50.3% 11.7% 12.8% 25.4% 24.8%

53.6% 14.3% 9.8% 42.1% 10.6%

27.0% 6.4% 26.9% 27.2% 30.0%

Used IDE

refactoring

Used Find

and Replace

Used Copy

and Paste

Edited

manually

Didn't have

this

scenario

Inlining a

variable or

method

Changing the

signature of an

existing

function

Moving a method

up or down the

class hierarchy

(c) The answers to Question 9: For the following scenarios, please
select the approaches you’ve used in the past month. Several ap-
proaches can be selected for each refactoring, the percentages show
the proportion of respondents who chose each option. (Out of 1,167
respondents)

48.2%

28.2%

24.4%

32.8%

10.4%

5.6%

It was easier to do it

manually

I didn't know about IDE

refactorings

I didn't think about using

IDE refactorings at the

time

I was not sure the

automated refactoring would

work the way I wanted

I had had some bad

experiences with IDE

refactorings before

Other

0 10 20 30 40 50

Respondents (%)

(d) The answers to Question 10: In these scenarios (Inlining, Chang-
ing the Signature, Pulling/Pushing), what were yourmain reasons for
not using the IDE refactoring feature? (Out of 868 respondents)

Figure 3: Answers to Questions 7–10 about different ways of using refactorings.

they had certain negative experiences with refactoring features

before. When given a prompt to answer freely, some respondents

mentioned several issues with refactoring features: performance

issues, namespace confusion, difficulties with refactorings that in-

volve significant changes to the logic of the program. This feedback

is critical to our IDE development teams, and therefore, there will

be a follow up with these respondents to seek more technical details

with regard to their issues.

After this, we repeated the same line of questioning in regards

to three other refactorings, namely, Inlining a variable or a method,

Changing the signature of a function, and Moving a method up and
down the class hierarchy (known also as Pull up and Push down).
The answers to Question 9 are demonstrated in Figure 3c.

It can be seen that Changing the signature is approximately as

popular as Extracting in Question 7, with 10.6% of respondents

saying that they did not recently have this scenario in their work

and 53.6% saying that they used automated IDE tools. For this

refactoring, editing manually was also a very popular answer. As

for the other two refactorings, they seem to be less popular than the

previous ones. For Inlining, a quarter of the respondents said that

they did not recently encounter this scenario in their work. Still,

half the respondents said that they use IDE features for Inlining.
Pulling up / Pushing down appears to be the least popular of the

chosen refactorings. 30% of respondents did not recently encounter

this refactoring in their work, and only 27% used IDE features for

these refactorings.

In Question 10, we once again selected participants who an-

swered Used Find and Replace, Used Copy and Paste, or Edited man-
ually for at least one refactoring from Question 9 (868 respon-
dents) and asked them about their reasons for not using the IDE

tools. The results are presented in Figure 3d. The general distribu-

tion of answers is similar to Figure 3b, but there are some differences

between them. There are more answers It was easier to do it man-
ually and I did not know about IDE refactorings. It is possible that

One Thousand and One Stories: A Large-Scale Survey of Software Refactoring Conference’17, July 2017, Washington, DC, USA

5.1% 4.5% 2.1% 22.6% 65.7%

22.5% 18.8% 2.7% 25.7% 30.3%

27.4% 15.7% 3.4% 27.5% 26.0%

30.3% 18.9% 2.1% 25.3% 23.4%

26.8% 15.0% 2.7% 27.0% 28.5%

42.8% 20.7% 2.7% 19.3% 14.5%

Don't know about it

Know about it, but don't

use it

Used it in the past, but

will not use it again Use it sometimes Use it regularly

Rename file, class,

method, symbol, etc.

Extract method, variable,

component, etc.

Move

Inline variable or method

Change signature

Pull Up / Push Down

member

Figure 4: The answers to Question 11: How familiar are you with the following IDE refactoring features? (Out of 1,167 respon-
dents)

these refactorings are less universally known. Another takeaway

for our IDE development teams is to attract developers’ attention to

the possibility of using these refactorings, perhaps by implementing

special tooltips or IDE notifications.

Summary: Renames are the most universal refactoring, with
virtually everyone using them. 85.8% of participants renamed
elements using IDE tools. On the other side, 30% of respondents
stated that they did not recently perform Pull Up and Push Down
refactorings. Despite the existence of IDE refactoring features,
developers still manually refactor their code, including Find and
Replace for Rename, Copy and Paste for Move, Editing manually
for Changing signature. Respondents justified their reluctance
to use IDE refactoring features with not knowing the outcomes,
along with manual refactoring being more intuitive.

4.3 IDE Refactoring Features
In this section, we focused our questions specifically on IDE refac-

toring features. Question 11 asked the developers about their fa-

miliarity with IDE refactoring features for the same six refactorings

studied in Section 4.2. The heatmap with all the results is demon-

strated in Figure 4.

Our first observation from the figure is the middle column. For

all the refactorings, there were equally very few respondents who

said that they refactored in the past, but will not do it again. This

is a very positive insight meaning that even with all the concerns

raised about automatic refactoring features, developers generally

do not give up on them.

Coming to the other answers, they correlate fairly well with

the previous questions. Once again, we can see the same two main

outliers. Rename is the most popular refactoring feature, with 65.7%

of respondents saying that they use it regularly and 22.6% more

saying that they use it sometimes. On the other hand, only 5.1%

of participants said they are unaware of the Rename IDE feature.

Meanwhile, Pull up / Push down remains the least popular: up to

42.8% of developers did not know about the Pull up / push down

IDE feature, only 19.3% of respondents used it sometimes, and only

14.5% used it regularly. All the other automated refactoring features

(Extract, Move, Inline, and Change signature) are distributed

more similarly between Rename and Pull up / Push down.

1,078 respondents (92.4%) selected Use it sometimes or Use it
regularly for at least one refactoring feature. For these participants,

the next block of questions was unlocked. In Question 12, we
asked the participants about their overall experience when using

the last several IDE refactoring features. The results are presented

in Table 2.

Table 2: The answers to Question 12: Please think about the
last several times you used IDE refactorings. How happy were
you with the overall experience? (Out of 1,078 respondents)

Answer % of respondents

Not at all happy 0.3%

Not happy 1.6%

Neither happy nor unhappy 12.6%

Happy 56.9%

Very happy 28.6%

It can be seen that the overall experience is overwhelmingly

positive, with 85.5% of developers giving positive responses, and

as much as 28.6% saying that they were Very happy with the last

several uses of IDE refactoring features.

Still, even though only 1.9% of developers answered either Not
happy or Not at all happy, there were 12.6% respondents who an-

swered Neither happy nor unhappy. It is very important to focus on

developers who do not give positive answers to get a deeper under-

standing of underlying shortcomings in IDE refactoring features.

To do this, in Question 13, we asked all the respondents who did

not give a positive answer to share their experience in an open

form. Several issues were brought up by several participants:

(1) 22 developers mentioned that their main problem was a cer-

tain negative experience when a refactoring was performed

inaccurately. 6 developers specifically mentioned that a refac-

toring broke the code or introduced new errors.

Conference’17, July 2017, Washington, DC, USA Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin, and Mohamed Wiem Mkaouer

(2) 7 developers mentioned that using an IDE refactoring tool

might be slower than doing the refactoring manually. On

the other hand, for very large projects, the problem of cor-

rectly taking care of all namespaces for various variables

and functions becomes more difficult.

(3) 3 developers mentioned that IDE refactoring tools have a

steep learning curve for them. As seen in previous questions,

almost all developers understand what Rename is, but may

never use some more specific features such as Pull up /

Push down simply because they have no environment to

understand what they do and what they are for. 5 more

developers mentioned that the existing features that they

know are confusing for them.

(4) Related to the last point, 5 developers mentioned that they

would want a more direct and more visible representation

of IDE refactoring tools: special tips, or maybe a notification

when a refactoring is possible.

(5) 3 developers mentioned a general lack of trust in all auto-

mated tools.

(6) 2 developers brought up another interesting issue: applying

an automated refactoring can violate a specific coding style

guideline or formatting. Therefore, even if the refactoring is

done correctly, it might still need some editing afterward.

This list is not comprehensive, but it can serve as a blueprint

to get an idea of the current challenges that developers are facing

with regard to the usage of automated IDE refactoring tools.

Similar to other IDE features, refactorings can be reverted in case

their outcome seems unexpected to the developer. To target this

event, we asked Question 14 about how often developers had to

undo a refactoring performed by the IDE. In order for the answers

not to be vague, we specified the approximate percentage of time

for each answer. The results are presented in Table 3.

Table 3: The answers to Question 14: How often do you undo
or revert an IDE refactoring action because you’re unhappy
with the result? (Out of 1,091 respondents)

Answer % of respondents

Often (>75% of the time) 3.0%

Every other time (≈50% of the time) 6.2%

Sometimes (≈25% of the time) 32.3%

Rarely (≈5% of the time) 50.8%

Never 7.7%

Naturally, it can be seen that in this question, extreme answers

were rare. Indeed, only 7.7% of respondents said that they Never
revert, but at the same time, only 6.2% said that they do it Every
other time (≈50% of the time) and only 3% said that they do it Of-
ten (>75% of the time). The vast majority of our respondents lied

in between these poles, with 32.3% saying they undo refactoring

actions Sometimes (≈25% of the time) and half of all participants

(50.8%) saying they do it Rarely (≈5% of the time).
In general, Undo is one of the most fundamental actions in

programming, it happens all the time for various reasons. In a

way, it is an inherent part of the creative process. Nevertheless,

it is captivating for us to discover the reasons behind developers

31.4%

71.2%

14.3%

4.9%

I changed my mind

The result was not

what I expected

I just wanted to

see how the

refactoring works

Other

0 10 20 30 40 50 60 70 80

Respondents (%)

Figure 5: The answers to Question 15: The last few times you
undid or reverted an IDE refactoring feature, what were the
reasons? (Out of 1,007 respondents)

undoing IDE refactoring actions. We asked this in Question 15
of all the respondents who did not choose Never in Question 14
(1007 respondents). The answers are presented in Figure 5.

The most popular answer by far is that the produced result of

the IDE feature was not what the developer expected, with 71.2%

of participants selecting this option. 31.4% of respondents said that

they changed their mind, and also 14.3% said that they just wanted

to see how the refactoring would work. Among other reasons that

the developers shared were their ownmistakes, mishaps, and wrong

configuration of refactoring (like namespaces of formats).

Summary: 85.5% of the respondents said that their experience
with the IDE refactoring features is positive. A deeper inquiry
about the existing challenges resulted in a list of possible issues to
consider, including the difficulty of refactoring large projects, and
the learning curve of some refactoring types. The vast majority
of developers occasionally undo or revert refactorings, with the
main reason being that the refactoring produced the result that
was unexpected.

4.4 Previewing Refactorings
Previewing the outcome of refactoring before its execution is one

of the main features of IntelliJ IDEs. Previously, in Question 13,
some developers mentioned that their reliance on the refactoring

feature highly depends on the preview, and that for some of them,

the preview makes the biggest difference. We decided to investigate

this further, so our next block of questions is aimed specifically at

the process of previewing the refactoring.

In Question 16, we asked all the respondents whether they find
the previewing useful. The distribution of the results is presented in

Figure 6. The opinion about previewing refactorings is also largely

positive. 44.5% of the respondents said that the previews are Very
useful, and 37.7% said that they are Useful for certain changes. Over-
all, this constitutes more than 80% of participants. On the other

hand, 12.3% said that the previews are Not very useful and 5.5%

more did not have an opinion on the subject.

While this in itself proves the importance of the previewing

function, it is of interest to dive deeper into both sides of this

question. For this reason, we divided the respondents into those

One Thousand and One Stories: A Large-Scale Survey of Software Refactoring Conference’17, July 2017, Washington, DC, USA

Not very useful
12.3%

Useful for certain changes
37.7%

Very useful
44.5%

Don't have an opinion
5.5%

Figure 6: The answers to Question 16: When refactoring the
code, do youfind it useful to preview all of your changes before
applying them? (Out of 1,167 respondents)

who gave positive answers and those who did not, and asked them

separate questions.

For participants who answered positively, Question 17 asked

for specific types of refactorings, for which they find the preview

to be especially useful. The distribution of answers correlated well

with the overall distribution of the popularity of the refactoring

feature usage (as indicated by the last two columns in Figure 4), so it

might be the case that the preview is used more or less similarly for

different refactorings, at least no obvious anomalies were present.

Then, in Question 18, we asked the respondents about their

reasons for wanting to see the preview. The most popular answer,

indicated by as many as 227 developers, is making sure that every-

thing is done as they want it to be, with 22 developers specifically

saying they are making sure that the code does not break, and 13

developers mentioning using this to combat a distrust in automatic

features. However, other specific aspects were brought up.

(1) 78 developers specifically mentioned making sure that the

IDE will not do anything extra and checking the impact of

the changes on the whole codebase. Often, this has to do

with renaming, and developers check namespaces, imports,

and occurrences in comments.

(2) 8 developers check the preview carefully because they say it

prevents them from wasting time later to check the Version

Control System (VCS) diff or undo the unwanted changes.

(3) 5 developers said that they check the readability of the code

during the change, making sure that applying refactoring

will not worsen it, as well as check code style. They men-

tioned that in this regard, the visual aspect of the preview is

very important.

(4) One developer mentioned that they are interested in the

preview as a means to comprehend their code. Basically, they

look at the preview not to check if the IDE missed something,

but rather to check whether they forgot something. Several

respondents mentioned that the preview allows them to

think about the necessity of the change one more time.

It can be seen that apart from its main purpose, the preview

sometimes serves different other goals. We also observed that the

reasons for seeing the preview correlate well with the general

shortcomings of refactoring features that developers mentioned in

Section 4.3. The preview can elevate many of the concerns that have

to do with refactorings, even such specific ones as, for example, the

uniformity of code style.

It is also important to understand the reasoning of participants

who did not answer positively to the question about the usefulness

of the preview. To such respondents, we showed Question 19
asking them for their reasons. The distribution of the results is

shown in Figure 7.

37.5%

29.3%

49.5%

27.9%

It would slow down

the process too

much

It would make the

process more

complex

I can predict the

effects of the

change on my own

Other

0 10 20 30 40 50

Respondents (%)

Figure 7: The answers to Question 19: What are your main
reasons for not finding a preview useful? (Out of 208 respon-
dents)

It can be seen that almost half of the respondents who were

asked this question selected the answer I can predict the effects of
the change on my own. The other responses are a little less popular:
the previewing slowing down the IDE too much or adding too much

to the complexity of the process.

When given a prompt to write the Other answer, respondents
mentioned several reasons.

(1) 13 developers said that they prefer to use the VCS diff post-

factum, motivating it with the fact that it produces the same

functionality but also merges it with the possibility to verify

a wider set of changes.

(2) 10 developers were simply very different from the ones in

the previous questions, saying that they would rather simply

run the code, and if it fails, they can always undo the change.

(3) 6 developers mentioned that the preview function is too

complex for them or confuses them.

(4) 5 developers did not know about or did not encounter the

preview feature.

In general, it seems that the opinion strongly depends on the

developers, and in our survey, more developers demonstrated a

cautious approach.

Summary: Previewing is a critical feature for the IDE refactor-
ing process. 82.2% of our respondents found it useful at least for
specific changes. Apart from simply making sure that the refac-
toring is what is intended, it is useful in other situations, such as
a fail-safe against a fast decision, a reason to review the change,
as well as a verification for code readability and compliance with
the code style of the project. A minority of our respondents were
not positive about the preview, with half of them justifying this
with being able to predict the refactoring outcome without the
preview.

Conference’17, July 2017, Washington, DC, USA Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin, and Mohamed Wiem Mkaouer

4.5 Final Thoughts
The last question in our survey, Question 20, was an open-ended

question for describing general thoughts about refactorings and IDE

refactoring features. In general, the respondents’ messages were

positive. 177 developers expressed their compliments, respondents

very often mentioned that refactorings are a cornerstone of the

development process, and for some of them — the main reason to

use an IDE in the first place. Let us enumerate the key findings in

their feedback.

Refactoring knowledge. 52 developers reiterated a previous

point about refactoring tools having a steep learning curve. They

suggested that refactorings should be directly enabled in IDEs,

through tips and popups. Some developers even suggested having

interactive tutorials within the IDE that show up for first-time usage.

Interestingly, several respondents mentioned that they are quite

familiar with some refactoring types and hardly know anything

about others.

Language difference. 9 developers commented on how refac-

torings behave differently in different languages. The biggest dif-

ference is noted between statically typed languages like Java and

dynamically typed languages like Python, with refactorings in the

latter ones being much less predictable. This is understandable from

the nature of the language itself, however, tool developers should

pay closer attention to refactorings in dynamically typed languages.

This supports the findings in other works [24, 30] observing that

developers are interested in refactorings for more languages, in-

cluding the dynamically typed ones.

Scope. As mentioned before, one common problem the respon-

dents have with refactorings is how they treat complex namespaces.

Developers also mentioned the ability for any refactoring to be eas-

ily undone as a useful feature. Furthermore, developers suggested

a more explicit and clear way to mark certain source files or code

elements as a no-go zone for refactorings.

Complex features. Finally, several developers mentioned their

thoughts on the complexity of tasks that refactorings solve. Some de-

velopers expressed the idea that most of the automatic refactorings,

like the ones we study in this survey, are useful and time saviors,

but they represent basic atomic actions. They suggested supporting

more complex features like splitting a large complex method or

class into several smaller ones. On the other hand, several develop-

ers mentioned that for simpler changes, it is often much faster to

apply the refactorings manually, and that automated refactorings

do not need to strive to replace the simpler changes completely.

5 THREATS TO VALIDITY
A large percentage of our participants (48.1%) have more than 10

years of professional experience. Moreover, the respondents might

be more experienced with refactorings because IntelliJ-based IDEs

are known for their rich support of refactorings. In our question-

naire, we focused only on a part of refactorings the IntelliJ-based

IDEs support, which are the most well-known and studied [23].

However, in the Final Thoughts section of the questionnaire, the

respondents were free to provide feedback about their experience

with any refactoring.

Our survey involved participants who use a large variety of

languages and IDEs, which could influence the way they plan their

refactorings. We did not classify our findings by a specific language

or an IDE. Further research aimed at investigating the possible

differences is necessary.

Since all participants in our survey are paid subscribers of Jet-

Brains IDEs, our results may not generalize to other contexts and

other companies. Also, concerning the correctness of our interpre-

tation of open responses, we did not discuss all responses because

some of them are open to various interpretations, and follow-up

surveys or interviews are needed to clarify them.

6 IMPLICATIONS
Educating about refactorings. The results show that developers

are not familiar with some of the refactoring types that IDEs support

(see Figure 4). Also, some developers might be cautious about the

side-affects of refactoring, so they are not likely ready to perform

any refactoring unless they get to know how it works (see Figure 3b).

To encourage users to use automatic refactorings tools in IDEs,

it might be useful to start with educating users about them. For

example, along with showing a possibility to perform a refactoring,

IDEs could provide some information about its purpose as well. The

knowledge about how refactoring works will help IDEs to respond

to user expectations (see Table 3 and Figure 5).

Increasing awareness about refactoring possibilities. One
of the reasons the developers do refactorings manually is that

they do not know about the possibility to perform them automati-

cally [35]. It could be helpful if IDEs suggested possible refactoring

opportunities for the user. The results show that users often refac-

tor their code, sometimes for more than an hour, so automatic

refactoring recommendations could save them time.

Supporting complex refactorings. Since some developers ex-

pressed their need in support of complex refactorings in IDEs, it

would be exciting to support batch refactorings [5, 37], even if they

are less intuitive. Such series of transformations would result in

more atomic methods that better optimize structural metrics, such

as complexity and lines of code. A lot of research efforts have fo-

cused on exploring the impact of refactoring on software quality

using metrics [3, 8, 21, 27], and it would be interesting to turn this

into actual IDE features.

7 CONCLUSION
In this paper, we presented the results of a large-scale survey about

refactoring usage, conducted by JetBrains Research among the

users of IntelliJ-based IDEs. The survey consists of several blocks of

questions: familiarity with refactorings, using different approaches

to conduct refactorings, making use of specific IDE refactoring

features, and using previews when employing refactorings. To-

gether with the background information at the start and some final

thoughts at the end, the results of this survey represent a unique

perspective of 1,183 experienced developers.

We hope that our results can be useful for both researchers and

practitioners, and the presented opinions of more than a thousand

developers can be used to perfect our methods and our tools.

ACKNOWLEDGEMENTS
We would like to thank the Market Research and Analytics team of

JetBrains for their advice and guidance during the designing and

conducting of the survey.

One Thousand and One Stories: A Large-Scale Survey of Software Refactoring Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Juan Pablo Sandoval Alcocer, Alejandra Siles Antezana, Gustavo Santos, and

Alexandre Bergel. 2020. Improving the Success Rate of Applying the Extract

Method Refactoring. Science of Computer Programming 195 (2020), 102475. https:

//doi.org/10.1016/j.scico.2020.102475

[2] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni,

and Marouane Kessentini. 2021. Refactoring Practices in the Context of Modern

Code Review: An Industrial Case Study at Xerox. (2021). https://doi.org/10.1109/

ICSE-SEIP52600.2021.00044

[3] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane

Kessentini. 2019. On the Impact of Refactoring on the Relationship Between

Quality Attributes and Design Metrics. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM). 1–11. https:

//doi.org/10.1109/ESEM.2019.8870177

[4] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian

Newman, Ali Ouni, and Marouane Kessentini. 2021. How We Refactor and How

We Document It? On the Use of Supervised Machine Learning Algorithms to

Classify Refactoring Documentation. Expert Systems with Applications 167 (2021),
114176. https://doi.org/10.1016/j.eswa.2020.114176

[5] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro Garcia,

Marcos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Anderson Oliveira,

and Diego Cedrim. 2019. A Quantitative Study On Characteristics and Ef-

fect of Batch Refactoring on Code Smells. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–11.
https://doi.org/10.1109/ESEM.2019.8870183

[6] Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni.

2020. Increasing the Trust In Refactoring Through Visualization. In Proceedings of
the IEEE/ACM 42nd International Conference on Software Engineering Workshops.
334–341. https://doi.org/10.1145/3387940.3392190

[7] John Brant and Friedrich Steimann. 2015. Refactoring Tools Are Trustworthy

Enough and Trust Must Be Earned. IEEE Software 32, 6 (2015), 80–83. https:

//doi.org/10.1109/MS.2015.145

[8] Diego Cedrim, Alessandro Garcia, MelinaMongiovi, Rohit Gheyi, Leonardo Sousa,

Rafael de Mello, Baldoino Fonseca, Márcio Ribeiro, and Alexander Chávez. 2017.

Understanding the Impact of Refactoring on Smells: A Longitudinal Study of 23

Software Projects. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 465–475. https://doi.org/10.1145/3106237.3106259

[9] Daniela S Cruzes and Tore Dyba. 2011. Recommended Steps for Thematic Synthe-

sis in Software Engineering. In 2011 international symposium on empirical software
engineering and measurement. 275–284. https://doi.org/10.1109/ESEM.2011.36

[10] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.

2008. Selecting Empirical Methods for Software Engineering Research. In Guide
to advanced empirical software engineering. 285–311. https://doi.org/10.1007/978-

1-84800-044-5_11

[11] Developer Economics. accessed: 05.07.2021. State of the Developer Nation — 2021

Q1, https://www.developereconomics.com/resources/reports/. https://www.

developereconomics.com/resources/reports/

[12] Martin Fowler, Kent Beck, John Brant, William Opdyke, and don Roberts. 1999.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman

Publishing Co., Inc. http://dl.acm.org/citation.cfm?id=311424

[13] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,

and Mohamed Wiem Mkaouer. accessed: 05.07.2021. Supplementary Data Pack-

age, https://zenodo.org/record/4923175. https://zenodo.org/record/4923175

[14] Robert M Groves, Floyd J Fowler Jr, Mick P Couper, James M Lepkowski, Eleanor

Singer, and Roger Tourangeau. 2011. Survey Methodology. Vol. 561. John Wiley

& Sons.

[15] Benedikt Hauptmann, Sebastian Eder, Maximilian Junker, Elmar Juergens, and

VolkmarWoinke. 2015. Generating Refactoring Proposals to Remove Clones from

Automated System Tests. In 2015 IEEE 23rd International Conference on Program
Comprehension. 115–124. https://doi.org/10.1109/ICPC.2015.20

[16] Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding Type

Changes in Java. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 629–641. https://doi.org/10.1145/3368089.3409725

[17] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An

Empirical Study of Refactoring Challenges and Benefits at Microsoft. IEEE
Transactions on Software Engineering 40, 7 (2014), 633–649. https://doi.org/10.

1109/TSE.2014.2318734

[18] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal Opinion Surveys. In

Guide to advanced empirical software engineering. 63–92. https://doi.org/10.1007/

978-1-84800-044-5_3

[19] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,

Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:

Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Transactions on
Software Engineering 44, 5 (2018), 453–469. https://doi.org/10.1109/TSE.2017.

2688333

[20] Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126–139. https://doi.org/10.

1109/TSE.2004.1265817

[21] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim

Bechikh, Kalyanmoy Deb, and Ali Ouni. 2015. Many-Objective Software Re-

modularization Using NSGA-III. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 3 (2015), 17. https://doi.org/10.1145/2729974

[22] Emerson Murphy-Hill and Andrew P Black. 2008. Refactoring Tools: Fitness for

Purpose. IEEE software 25, 5 (2008), 38–44. https://doi.org/10.1109/MS.2008.123

[23] EmersonMurphy-Hill, Chris Parnin, and Andrew P Black. 2011. HowWe Refactor,

and How We Know It. IEEE Transactions on Software Engineering 38, 1 (2011),

5–18. https://doi.org/10.1109/TSE.2011.41

[24] Christian D. Newman, Mohamed Wiem Mkaouer, Michael L. Collard, and

Jonathan I. Maletic. 2018. A Study on Developer Perception of Transforma-

tion Languages for Refactoring. In Proceedings of the 2Nd International Workshop
on Refactoring (IWoR 2018). 34–41. https://doi.org/10.1145/3242163.3242170

[25] Jonhnanthan Oliveira, Rohit Gheyi, Melina Mongiovi, Gustavo Soares, Márcio

Ribeiro, and Alessandro Garcia. 2019. Revisiting the Refactoring Mechanics.

Information and Software Technology 110 (2019), 136–138. https://doi.org/10.

1016/j.infsof.2019.03.002

[26] Jonhnanthan Oliveira, Rohit Gheyi, Felipe Pontes, Melina Mongiovi, Márcio

Ribeiro, and Alessandro Garcia. 2020. Revisiting Refactoring Mechanics from

Tool Developers’ Perspective. In Brazilian Symposium on Formal Methods. 25–42.
https://doi.org/10.1007/978-3-030-63882-5_3

[27] Jevgenija Pantiuchina,Michele Lanza, andGabriele Bavota. 2018. Improving Code:

The (Mis) Perception of Quality Metrics. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 80–91. https://doi.org/10.1109/

ICSME.2018.00017

[28] Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Pianta-

dosi, Rocco Oliveto, Gabriele Bavota, and Massimiliano Di Penta. 2020. Why

Developers Refactor Source Code: A Mining-Based Study. ACM Transactions
on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1–30. https:

//doi.org/10.1145/3408302

[29] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven

Apel, Krzysztof Czarnecki, and Jesus Alejandro Padilla. 2018. A Study of Feature

Scattering in the Linux Kernel. IEEE Transactions on Software Engineering, Early
Access (2018), 146–164. https://doi.org/10.1109/TSE.2018.2884911

[30] Gustavo H Pinto and Fernando Kamei. 2013. What Programmers Say About

Refactoring Tools? An Empirical Investigation of StackOverflow. In Proceedings
of the 2013 ACM workshop on Workshop on refactoring tools. 33–36. https://doi.

org/10.1145/2541348.2541357

[31] IntelliJ Platform. accessed: 05.07.2021. Open Source Platform for Building IDEs

and Developer Tools, https://www.jetbrains.com/opensource/idea/. https://

www.jetbrains.com/opensource/idea/

[32] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-

toring with Synthesis. ACM SIGPLAN Notices 48, 10 (2013), 339–354. https:

//doi.org/10.1145/2544173.2509544

[33] Max Schäfer and Oege De Moor. 2010. Specifying and Implementing Refactorings.

In Proceedings of the ACM international conference on Object oriented programming
systems languages and applications. 286–301. https://doi.org/10.1145/1869459.

1869485

[34] Tushar Sharma, Girish Suryanarayana, and Ganesh Samarthyam. 2015. Chal-

lenges to and Solutions for Refactoring Adoption: An Industrial Perspective. IEEE
Software 32, 6 (2015), 44–51. https://doi.org/10.1109/MS.2015.105

[35] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-

tor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 858–
870. https://doi.org/10.1145/2950290.2950305

[36] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. 2012. Automated Behavioral

Testing of Refactoring Engines. IEEE Transactions on Software Engineering 39, 2

(2012), 147–162. https://doi.org/10.1109/TSE.2012.19

[37] Leonardo Sousa, Diego Cedrim, Alessandro Garcia, Willian Oizumi, Ana C Bib-

iano, Daniel Oliveira, Miryung Kim, and Anderson Oliveira. 2020. Characterizing

and Identifying Composite Refactorings: Concepts, Heuristics and Patterns. In

Proceedings of the 17th International Conference on Mining Software Repositories.
186–197. https://doi.org/10.1145/3379597.3387477

[38] Nikolaos Tsantalis, Matin Mansouri, Laleh M Eshkevari, Davood Mazinanian,

and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit

History. In Proceedings of the 40th International Conference on Software Engineering.
483–494. https://doi.org/10.1145/3180155.3180206

[39] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P

Bailey, and Ralph E Johnson. 2012. Use, Disuse, and Misuse of Automated

Refactorings. In 2012 34th International Conference on Software Engineering (ICSE).
233–243. https://doi.org/10.1109/ICSE.2012.6227190

[40] Mohsen Vakilian and Ralph E Johnson. 2014. Alternate Refactoring Paths Reveal

Usability Problems. In Proceedings of the 36th international conference on software
engineering. 1106–1116. https://doi.org/10.1145/2568225.2568282

https://doi.org/10.1016/j.scico.2020.102475
https://doi.org/10.1016/j.scico.2020.102475
https://doi.org/10.1109/ICSE-SEIP52600.2021.00044
https://doi.org/10.1109/ICSE-SEIP52600.2021.00044
https://doi.org/10.1109/ESEM.2019.8870177
https://doi.org/10.1109/ESEM.2019.8870177
https://doi.org/10.1016/j.eswa.2020.114176
https://doi.org/10.1109/ESEM.2019.8870183
https://doi.org/10.1145/3387940.3392190
https://doi.org/10.1109/MS.2015.145
https://doi.org/10.1109/MS.2015.145
https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://www.developereconomics.com/resources/reports/
https://www.developereconomics.com/resources/reports/
http://dl.acm.org/citation.cfm?id=311424
https://zenodo.org/record/4923175
https://doi.org/10.1109/ICPC.2015.20
https://doi.org/10.1145/3368089.3409725
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/2729974
https://doi.org/10.1109/MS.2008.123
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1145/3242163.3242170
https://doi.org/10.1016/j.infsof.2019.03.002
https://doi.org/10.1016/j.infsof.2019.03.002
https://doi.org/10.1007/978-3-030-63882-5_3
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1145/3408302
https://doi.org/10.1145/3408302
https://doi.org/10.1109/TSE.2018.2884911
https://doi.org/10.1145/2541348.2541357
https://doi.org/10.1145/2541348.2541357
https://www.jetbrains.com/opensource/idea/
https://www.jetbrains.com/opensource/idea/
https://doi.org/10.1145/2544173.2509544
https://doi.org/10.1145/2544173.2509544
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1109/MS.2015.105
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1145/3379597.3387477
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1109/ICSE.2012.6227190
https://doi.org/10.1145/2568225.2568282

	Abstract
	1 Introduction
	2 Related Work
	3 Study design
	3.1 Pilot Survey
	3.2 Final Survey
	3.3 Surveying Process

	4 Results
	4.1 Familiarity with Refactorings
	4.2 Refactoring Approaches
	4.3 IDE Refactoring Features
	4.4 Previewing Refactorings
	4.5 Final Thoughts

	5 Threats to Validity
	6 Implications
	7 Conclusion
	References

