
An Empirical Study on the Impact of Refactoring
on Quality Metrics in Android Applications

Oumayma Hamdi∗, Ali Ouni∗, Eman Abdullah AlOmar†, Mel Ó Cinnéide‡, Mohamed Wiem Mkaouer†
∗ETS Montreal, University of Quebec, QC, Canada

†Rochester Institute of Technology, Rochester, NY, USA
‡School of Computer Science, University College Dublin, Ireland

omayma.hamdi.1@etsmtl.ca, ali.ouni@etsmtl.ca, eaa6167@g.rit.edu, mel.ocinneide@ucd.ie, mwmvse@rit.edu

Abstract—Mobile applications must continuously evolve, some-
times under such time pressure that poor design or implemen-
tation choices are made, which inevitably result in structural
software quality problems. Refactoring is the widely-accepted
approach to ameliorating such quality problems. While the
impact of refactoring on software quality has been widely studied
in object-oriented software, its impact is still unclear in the
context of mobile apps. This paper reports on the first empirical
study that aims to address this gap. We conduct a large empirical
study that analyses the evolution history of 300 open-source
Android apps exhibiting a total of 42,181 refactoring operations.
We analyze the impact of these refactoring operations on 10
common quality metrics using a causal inference method based
on the Difference-in-Differences (DiD) model. Our results indicate
that when refactoring affects the metrics it generally improves
them. In many cases refactoring has no significant impact on
the metrics, whereas one metric (LCOM) deteriorates overall as
a result of refactoring. These findings provide practical insights
into the current practice of refactoring in the context of Android
app development.

Index Terms—Mobile app, refactoring, quality metrics, An-
droid, empirical study

I. INTRODUCTION

Android applications undergo modifications, improvements
and enhancements to cope with rapid and evolving user
requirements. Such maintenance activities can cause quality
to decrease if improperly conducted [24], [35], [42], [53].
In order to facilitate software evolution, developers need to
improve software structure on a regular basis. Refactoring is
the most common approach to improve the internal structure
of software systems without affecting their external behavior
[6], [21], [34], [37], [40].

Mobile apps differ significantly from traditional software
systems [27], [31], [33] in having to deal with limitations on
specific hardware resources like memory, CPU, display size,
etc., as well as the highly dynamic nature of the mobile app
market and the ever-increasing user requirements. These dif-
ferences can play an important role in mobile app development
and evolution. Indeed, unlike object-oriented software systems
[6], [8], [13], [15], [38], [48], the impact of refactoring on
quality metrics in mobile apps has received little attention.
Hence, much uncertainty exists about the relationship between
refactoring and quality aspects in mobile apps. Yet, refactoring
practices may exhibit different challenges in the context of
Android apps. Even though refactoring aims at improving code

structure, this expectation might not be always met in real
settings as refactoring changes are often performed quickly to
meet users requirements, fix defects or adapt to environment
changes in the highly volatile mobile market [15]. To develop
efficient and reliable refactoring support tools for mobile apps,
there is a need to better understand the current refactoring
practice and its impact on structural quality.

To fill this gap and improve the current knowledge about
the impact of refactoring on structural quality, we conduct an
empirical study on a dataset composed of 300 open-source
Android apps that are freely distributed in the Google Play
Store. We analyze the impact of 10 commonly used refactoring
operations on 10 well-known quality metrics in Android apps.
We identified a total of 42,181 applied refactoring operations
and measured quality metrics values before and after each
refactoring operation. Then we analyzed the impact of each
refactoring on the considered quality metrics using a causal in-
ference method based on the Difference-in-Differences (DiD)
model, one of the widely-used analytical techniques for causal
inference [9].

Overall, our study findings can be summarized as follows.

• Some refactoring types correlate with a broad improve-
ment in software metric values. For example, the Move
Method refactoring brings about a significant improve-
ment in terms of coupling (CBO and RFC), cohesion
(LCOM, TCC and LCC), complexity (WMC) and design
size (LOC).

• The cohesion metric LCOM proved to be least consistent
metric, improving for some refactoring types while deteri-
orating for others, and exhibiting an overall deterioration
in response to refactoring. This resonates with earlier
work showing LCOM to be very volatile under refac-
toring [38], and inclined to deteriorate when coupling
improves [41].

• Non-refactoring code changes tend to have a negligible
impact on the majority of quality metrics, except for the
design size-related metrics which tend to increase in most
of the commits. It is to be expected that design size
related metrics increase over time as a project evolves,
following Lehman’s law on software evolution [28].

The paper is structured as follows. Section II reviews related
work. Section III presents the design of our empirical study,



while Section IV presents and discusses our results. Section
V discusses the implications of our findings for developers,
researchers and tool builders. Section VI describes the threats
to validity of our study. Finally, Section VII draws our
conclusions and present some ideas for future work.

II. RELATED WORK

Several research efforts have focused on studying when and
how to apply refactoring. Fowler defined the first refactoring
catalog that contains 72 refactoring operations and specified
a guide containing information on when and how to apply
them [21]. Later, Simon et al. [46] presented a generic
approach to generate visualizations that supports developers
to identify bad smells and propose adequate refactorings.
They focus on use relations to propose move method/attribute
and extract/inline class refactorings. They define a distance-
based cohesion metric, which measures the cohesion between
attributes and methods with the aim of identifying methods
that use or are used by more features of another class than
the class that they belong to, and attributes that are used
by more methods of another class than the class that they
belong to. The calculated distances are visualized in a three-
dimensional perspective supporting the developer to manually
identify refactoring opportunities.

Various research works attempted to quantitatively evaluate
whether refactoring indeed improves quality in traditional
software systems. Alshayeb et al. [8] investigated the impact
of refactoring operations on five quality attributes, namely
adaptability, maintainability, understandability, reusability, and
testability. Their results highlight that benefits brought by
refactoring operations on some code classes are often coun-
terbalanced by a decrease of quality in some other classes.
Pantiuchina et al. [43] explored the correlation between code
metrics and the quality improvement explicitly reported by
developers in commit messages. The study shows that quality
metrics sometimes do not capture the quality improvement
documented by developers. Similarly, AlOmar et al. [6] con-
ducted a large scale empirical study on open-source java
projects to investigate the extent to which refactorings impact
on quality metrics match with the developers perception. The
study results indicate that quality metrics related to cohesion,
coupling and complexity capture more developer intentions
of quality improvement than metrics related to encapsulation,
abstraction, polymorphism and design size

Tahvildari & Kontogiannis [50] analyzed the association
of refactorings with a possible effect on maintainability en-
hancements through refactorings. They use a catalogue of
object-oriented metrics as an indicator for the transformations
to be applied to improve the quality of a legacy system.
The indicator is achieved by analysing the impact of each
refactoring on these object-oriented metrics. Ó Cinnéide et al.
[38] investigated the impact of refactoring on five popular co-
hesion metrics using eight Java desktop systems. Their results
demonstrate that cohesion metrics disagree with each other in
55% of cases. Furthermore, Geppert et al. [22] empirically
investigated the impact of refactoring on changeability. They

considered three factors for changeability: customer reported
defect rates, effort, and scope of changes. Szoke et al. [49]
performed a study on five software systems to investigate
the relationship between refactoring and code quality. They
show that small refactoring operations performed in isolation
rarely impact software quality. On the other side, a high
number of refactoring operations performed in block helps in
substantially improving code quality.

Strogglos and Spinellis [48] investigated the impact of
refactoring on eight OO quality metrics. Their results indicate
that refactoring caused a non-trivial increase in some specific
metrics such as LCOM, Ca, RFC leading to less coherent
classes or assigning more responsibilities to other classes.
Kataoka et al. [26] studied the refactoring effect on various
coupling metrics, comparing the metrics before and and after
the refactorings Extract Method and Extract Class, which were
performed by a single developer in desktop C++ programs.
More recently, Cedrim et al. [15] conducted a longitudi-
nal study of 25 desktop projects to examine the impact of
refactoring on software quality. The results indicate that only
2.24% of refactorings removed code smells while 2.66% of
the refactorings introduced new ones. For the sake of clarity,
Table I provides a summary of the existing works.

We observe from the existing literature that most studies
focus basically on desktop applications while little knowledge
is available for mobile apps. Furthermore, existing studies
are merely limited to some particular quality metrics, or/and
few refactoring types. In our study, we focus on Android
apps while considering the analysis of more quality metrics.
While current studies collect refactorings based on mining
developers documentation, or release-based static analysis
tools, we use a fine grained detection of refactoring based
on RefactoringMiner to reduce any bias towards imprecise
collection of refactorings. Furthermore, one of the limitations
in the state-of-the-art studies is that they do not consider that
refactoring operations are typically accompanied with other
code changes in either the commit [6], [15], [48] or release
levels [8], [13], [16]. Such code changes can add more noise
to the analyzed quality metrics values, and impact the final
outcome the metrics analysis. In our study, we adopt a causal
inference based on the DiD model [9] to better assess the
impact of refactoring on quality metrics and assure that the
metrics variations are due to refactoring.

III. STUDY DESIGN

This section describes the design of our empirical study.
We first setup our research question. Then, we explain our
experimental setup including data collection, and analysis
methods employed.

Our main goal in this study is to investigate how refactoring
affects structural quality metrics in Android apps. In particular,
we address the following research question:

RQ. Do refactorings applied by Android developers improve
quality metrics?



TABLE I: A summary of the literature on the impact of refactoring on software quality attributes.

Study Year Software Metric Internal Quality Attribute Refactoring Level
Class Method Field

Simon et al. [46] 2001 Cohesion measures Cohesion Yes Yes Yes
Kataoka et al. [26] 2002 Coupling measures Coupling Yes Yes No

Tahvildari & Kontogiannis [50] 2004 LCOM / WMC / RFC / NOM Inheritance / Cohesion / Coupling / Complexity Not mentionedCDE / DAC / TCC
Geppert et al. [22] 2005 Not mentioned Not mentioned Not mentioned
Stroggylos & Spinells [48] 2007 CK / Ca / NPM Inheritance / Cohesion / Coupling / Complexity Not mentioned
Alshayeb [8] 2009 CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Yes Yes Yes
Ó Cinnéide et al. [38] 2012 LSCC / TCC / CC / SCOM / LCOM5 Cohesion Yes Yes Yes

Szoke et al. [49] 2014 CC / U / NOA / NII / NAni Size / Complexity Not mentionedLOC / NUMPAR / NMni / NA

Cedrim at al. [15] 2016 LOC / CBO / NOM / CC Cohesion / Coupling / Complexity Yes Yes YesFANOUT / FANIN

Pantiuchina et al. [43] 2018 LCOM / CBO / WMC / RFC Cohesion / Coupling / Complexity Yes Yes YesC3 / B&W / SRead

AlOmar et al. [6] 2019
CK / FANIN / FANOUT / CC NIV / NIM

Inheritance / Cohesion / Coupling / Complexity Yes Yes YesEvg / NPath / MaxNest / IFANIN
Size / Polymorphism / Encapsulation / AbstractionLOC / CLOC / CDL / STMTC

Step 1: Android 

apps selection

300 apps

Step 3: Commit

changes extraction

Step 2: Refactorings

detection

Treatment Group data:

Quality metrics values 

before and after 

refactoring

List of applied 

Refactorings

List of refactoring 

commits

RQ: The impact of 

refactoring on quality 

metrics.

Treatment group

Step 5: Quality metrics 

measurements

Step 4: Non-refactoring

changes extraction

Code changes 

before  and  after 

non-refactoring

commits

Control group

Step 6: Refactoring

Impact Analysis

DID model

Control Group data:

Quality metrics values 

before and after non-

refactoring commits

Fig. 1: The overall process of our empirical study.

A. Context and Dataset

Since this study is focused on Android apps for which we
investigate the relationship between refactoring occurring in
the development cycle and quality metrics, the context of
our study consists of a representative set of Android apps,
and refactorings/quality metrics. In particular, we analyzed
(i) 10 common refactoring types which are amongst Fowler’s
refactoring catalog [21], and (ii) a set of ten common quality
metrics based on Chidamber & Kemerer (CK) metrics suite
[17]. The CK metrics have been studied in several empirical
studies and have shown their relevance in capturing different
aspects of code maintainability [6], [12], [13], [23], [29], [38].
We also considered other common quality metrics such as
number of lines of code (LOC), the Tight Class Cohesion
(TCC), the Loose Class Cohesion (LCC), the number of
static invocations (NOSI), and the variables quantity (VQTY)
as they measure additional quality aspects from developers
perspective. Tables II and III report the set of refactorings and
quality metrics, respectively, that are investigated in our study.

B. Empirical Study Setup

To address our research question, we design a controlled
experiment where we select two groups of code changes, a
first group that consists of refactoring-related change changes

(i.e., treatment group), and a second that consists of a non-
refactoring code changes (i.e., control group). Thereafter, we
investigate the impact of both groups on quality metrics to
allow statistical analysis. Figure 1 describes the overall process
of our study which consists of six main steps: (1) Android apps
selection, (2) refactoring extraction, (3) commit extraction,
(4) non-refactoring changes extraction, (5) Quality metrics
measurement, and (6) refactoring impact analysis.

1) Step 1: Android apps selection: We target open-source
Android apps that are freely distributed in the Google Play
store and have their versioning history hosted on GitHub. For
this purpose, we performed a custom search on GitHub by
targeting all Java repositories in which the readme.md file
contains a link to a Google Play Store page. Overall, we
obtained 19,212 apps. Thereafter, inspired by previous works
[19], [30], we applied the following filters to exclude:

• Apps whose GitHub repository does not contain an
AndroidManifest.xml file as they clearly do not
refer to real Android apps. The result of this filter was a
collection of 5,766 apps.

• Apps for which the corresponding Google Play page is
not existing anymore. This filter returned 3,160 apps.

• Repositories that contain forks of other repositories. This
filtering step leads to a final set of 1,923 Android apps



TABLE II: The list of studied refactoring operations.
Ref. Refactoring Description Level

MM Move Method Moves a method from a class to another class. Method
EM Extract Method Creates a new method from an existing fragment of code from a given method. Method
IM Inline Method Replaces calls to the method with the method’s content and delete the method itself. Method
EMM Extract and Move Method Extracts and moves method. Method
PDM Push Down Method Moves a method from a class to those subclasses that require it. Method
PUM Pull Up Method Moves a method from a class(es) to its immediate superclass. Method
MA Move Attribute Moves Attribute from a class to another class. Attribute
PDA Push Down Attribute Moves an attribute from a class to those subclasses that require it. Attribute
PUA Pull Up Attribute Moves an attribute from a class(es) to their immediate superclass. Attribute
ESC Extract Super Class Creates a superclass from two classes with common attributes and methods. Class
MC Move Class Moves a class to another package. Class

TABLE III: The list of studied quality attributes and metrics.
Quality Attribute Metric description

Coupling Coupling Between Objects (CBO) Number of classes that are coupled to a particular class [17].
Number Of Static Invocations (NOSI) Number of invocations of static methods [10]
Response For a Class (RFC) Number of method invocations in a class [17].

Cohesion Lack Of Cohesion of Methods (LCOM) Numbers of pairs of methods that shared references to instance variables [17].
Tight Class Cohesion (TCC) Numbers of directly connected public methods in a class [10].
Loose Class Cohesion (LCC) Numbers of directly/indirectly connected public methods in a class [10].

Complexity Weight Method Class (WMC) The sum of all the complexities of the methods (McCabe’s cyclomatic complexity) in the class [17].
Design Size Lines of code (LOC) Number of lines of code ignoring spaces and comments [10].

Variable Quantity (VQTY) Number of declared variables [10].
Inheritance Depth of Inheritance Tree (DIT) Number of classes that a particular class inherits from [17].

Thereafter, we randomly selected a representative set of 300
apps which represents 15% of the final set, exhibiting a total
of 42,181 refactoring operations. We focused our study to this
set of apps for computational reasons. It is worth noting that
the sample size of 300 apps and 42,181 refactoring operations
is larger than related studies on the impact of refactoring on
software quality [8], [13], [15], and than typical samples in
software engineering research [55]. Table IV summarizes the
statistics about the collected dataset.

2) Step 2: Refactorings detection: In this step, we collect
all the refactoring operations applied to the studied apps. We
utilize RefactoringMiner [52] to detect applied refactoring in-
stances on the commit level. RefactoringMiner is a command-
line based open source tool that is built on top of the UMLD-
iff [56] algorithm for differencing object-oriented models.
RefactoringMiner has been shown to achieve a precision of
98% and recall of 87% [45], [52]. The tool walks through
the commit history of a project’s Git repository to extract
refactorings between consecutive commits. RefactoringMiner
supports the detection of various common refactoring types
from Fowler’s catalog. Among the supported refactorings,
all refactoring types detected by Refactoring Miner were
considered in this study, except the Rename Method and
Rename Class refactorings as they are not directly related to
one of the structural metrics studied in our study. Overall, our
extraction process identifies a list of 10 common refactoring
types which are amongst the most common refactoring types
[6], [14], [15], [37], [40]. Tables II and V report the list and
the number of refactorings, respectively, that are investigated
in our study.

3) Step 3: Commit changes extraction: After the extrac-
tion of all refactoring operations, we collect the IDs of all
refactoring commits, i.e., commits in which a refactoring
operation was applied, as well as the IDs of the commits that

immediately precede the refactoring commit. The GitHub API
facilitates this process; in particular, we use the git clone
command to download the source code of each refactoring
commit as well as its immediately preceding commit. These
commits enable the identification of quality metrics values
before and after the application of refactoring.

4) Step 4: Non-refactoring changes extraction: In this step,
we extract a set of commits that contain non-refactoring
changes for our controlled experiment. To do this, based on the
treatment group, we randomly selected a set of non-refactoring
commits representing our control group. For each commit,
we collected its ID as well as the commits that precede it.
Thereafter, we performed the same procedure adopted in Step
3 to collect their source code.

5) Step 5: Quality metrics measurement: To assess the
impact of refactoring on software quality, we need to measure
a set of quality metrics. In particular, we measure for each
applied refactoring change as well as non-refactoring changes,
the class level metrics before and after the change has been
applied in the commit level. Specifically, since we already have
the list of refactoring operations applied in each commit, we
compute for each class the quality metric values before and
after each commit in both treatment and control groups. To
calculate the values of these metrics we utilized a widely-used
open source CK Metrics Suite tool, namely, CK-metrics,which
is a command-line based tool provided by Aniche [10] that
allows automating our dataset collection process.

6) Step 6: Refactoring Impact Analysis: In this step, we
investigate whether or not each metric is improved by refac-
toring. In order to do this, we set up two hypotheses, the null
hypothesis H0 assumes that a refactoring operation ri does not
improve a quality metric mj , and the alternative hypothesis H
indicates that the refactoring ri improves mj .

After collecting the metric values before and after each



commit in both treatment and control groups, we calculate
the differences between their quality metric values before and
after the refactoring change, at the class level. Thereafter, we
use two statistical methods (1) statistical significance, and (2)
causal inference.

Statistical Significance Analysis. To capture the overall
trends of the variation in the metric values we use statistical
significance analysis. To do so, for each refactoring operation
ri, and each metrics mj , we use the Wilcoxon rank-sum test
[54], a non-parametric test, to assess the statistical differences
between the distribution of mj before and after the application
of ri. In addition to the Wilcoxon test, we used the non-
parametric effect Cliff’s delta (δ) [18] to compute the effect
size, i.e., the magnitude of the difference between the distri-
butions. The value of effect size is statistically interpreted as:

• Negligible : if | δ |< 0.147,
• Small : if 0.147 ≤| δ |< 0.33,
• Medium : if 0.33 ≤| δ |< 0.474, or
• High : if | δ |≥ 0.474.

Furthermore, to better assess the impact of a specific refac-
toring operation on quality metrics, we performed a causal
inference experiment to assess whether the metrics variations
are due to the refactoring changes or to other code changes.

Causal Inference Analysis. Causal inference stems from
the social sciences and explores cause and effects as its main
concern [9]. In econometrics, difference-in-differences (DiD)
methods are one of the key analytical elements for causal
inference. DiD is used to statistically analyze actual and
counterfactual scenarios, thereby enabling a causality analysis.
To investigate the effects of a treatment in statistics, one cannot
see the results with and without an intervention based on
one individual only. As shown in Figure 2, the DiD model
addresses this problem by comparing two groups, (1) a group
with the intervention, called treatment group (i.e., a set of code
changes with refactoring) and (2) a group without it, called a
control group (i.e., a set of code changes without refactoring).
The underlying assumption of DiD design is that the trend of
the control group provides an adequate proxy for the trend
that would have been observed in the treatment group in the
absence of treatment. Let, T and C, the treatment and the
control group, respectively. The refactoring impact RI of a
given refactoring operation R on a given quality metric Mi is
calculated as follows:

RI(R,Mj) = Y R
Mi
− Y C

Mi
(1)

where Y R
Mi

is the median perceived impact after the application
of the set of refactorings R on the treatment group T on the
metric Mi; and Y C

Mi
is the median perceived change in the

control group C on the metric Mi.

C. Replication package

Our dataset is available in our replication package for future
replications and extensions [44].

Before After

Impact trend in the 

Control Group

Im
p
a
c
t 

o
n
 q

u
a
lit

y
m

e
tr

ic

time

Impact trend in the 

Treatment Group

Refactoring

Effect

Counterfactual Impact trend 

in the Treatment Group

Code

change

Fig. 2: An example of the causal inference method using a
DiD model showing the refactoring impact on a quality metric
before versus after the application of refactoring.

TABLE IV: Dataset statistics.

Statistic Count

# of Android apps 300
# of commits with refactorings 13,500
# of refactoring operations 42,181
Total number of commits 271,263

IV. EMPIRICAL STUDY RESULTS

This section reports and discusses our experimental results
to address our research question: do refactorings applied by
Android developers improve quality metrics? To answer this
question, for each commit change of both groups, described
in III, we compute its corresponding metric values before
and after each commit in both treatment and control groups.
Figures 3 and 4 show the general distribution of the metrics
values before and after commit changes in the treatment,
and control groups, respectively. We also provide a detailed
analysis in Table VI where each column reports (i) the impact
of the respective refactoring type based on the DiD technique
using Equation 1, (ii) the predominant behavior indicating
whether the refactoring impact is positive or negative, and (iii)
the p-value as well as the Cliff’s delta (δ).

In the following, we report and discuss the obtained results
for each quality metric along with real world examples from
our experiments.

TABLE V: The list of refactoring applied to the analyzed apps.

Refactoring type Number

Extract Method 11,736
Move Attribute 8,321
Move Method 5,847
Extract And Move Method 5,121
Inline Method 3,952
Push Down Method 2,541
Pull Up Attribute 1,371
Pull Up Method 1,170
Extract SuperClass 1,140
Move Class 982
Total 42,181



0

50

100

150

200

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(a) Move Method

0

50

100

150

200

250

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(b) Extract Method

0

50

100

150

200

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(c) Inline Method.

0

50

100

150

200

250

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(d) Extract And Move Method

0

20

40

60

80

100

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(e) Push Down Method.

0

100

200

300

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(f) Pull Up Method.

0

20

40

60

80

100

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(g) Move Attribute.

0

50

100

150

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(h) Pull Up Attribute.

0

20

40

60

80

100

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(i) Extract Super Class.

0

20

40

60

80

cbo wmc dit lcc tcc rfc lcom nosi loc vqty

Before
After

(j) Move Class.

Fig. 3: Treatment group results: Beanplots of metric values before and after each refactoring operation.

0

50

100

150

cbo wmc dit rfc lcc tcc lcom nosi loc vqty

Before
After

Fig. 4: Control group results: The impact of non-refactoring
code changes on quality metrics.

A. Results for Coupling Metrics

Coupling is defined as the strength of the dependencies that
exist between classes [17], [47]. Low coupling is desirable
since it helps in isolating responsibilities and changes. As

shown in Table III, we assess three coupling metrics. The
first is the Coupling Between Object (CBO), counting the
number of dependencies a class has (i.e., the number of other
classes it depends on). The second metric is the Response for a
Class (RFC), calculated as the number of distinct methods and
constructors invoked by a class. The third is Number Of Static
Invocations (NOSI) which counts the number of invocations
of static methods. The higher the CBO, RFC and NOSI the
worse is the class coupling.

1) CBO: From the beanplots in Figure 3 and Table VI,
we observe that several applied refactorings improve the
CBO metric (i.e., decrease its value). The most influential
refactorings are Pull Up Method, Push Down Method, and
Extract Super Class significantly reducing CBO from 9 to



TABLE VI: The impact of refactoring (treatment group) and non-refactoring (control group) changes on quality metrics.

Data Change Measure Coupling Cohesion Complexity Design Size Inheritance
CBO RFC NOSI LCOM TCC LCC WMC LOC VQTY DIT

Tr
ea

tm
en

t
G

ro
up

Extract Method Refactoring impact 0 -4 0 3 0 0 -2 -4 0 0
Behavior - ↓ - ↑ - - ↓ ↓ - -
P-value (δ) 0.06 (S) <0.05 (S) 0.10 (S) 0.07 (N) 0.18 (S) 0.18 (S) <0.05 (S) <0.05 (S) 0.06 (N) 0.06 (N)

Move Attribute Refactoring impact 0 -9 5 1 0.1 0.1 0 0 -12 0
Behavior - ↓ ↑ ↑ ↑ ↑ - - ↓ -
P-value (δ) <0.05 (N) <0.05 (N) 0.17 (N) <0.05 (N) <0.05 (N) <0.05(N) 0.40 (N) 0.13 (N) <0.05 (S) 0.1 (N)

Move Method Refactoring impact -8 -4 0 -2 0.3 0.3 -3 -13 0 0
Behavior ↓ ↓ - ↓ ↑ ↑ ↓ ↓ - -
P-value (δ) <0.05 (S) <0.05 (N) 0.70 (N) <0.05 (S) <0.05 (N) <0.05 (N) <0.05 (S) <0.05 (M) 0.11 (N) (M) 0.15 (S)

Extract And Refactoring impact -8 -11 0 -2 0.7 0.7 -3 -12 0 0
Move Method Behavior ↓ ↓ - ↓ ↑ ↑ ↓ ↓ - -

P-value (δ) <0.05 (S) <0.05 (N) 0.33 (N) <0.05 (S) <0.05 (N) <0.05 (N) <0.05 (S) <0.05 (M) 0.08 (N) 0.07 (N)
Inline Method Refactoring impact -3 0 0 -4 0 0 -1 0 -5 0

Behavior ↓ - - ↓ - - ↓ - ↓ -
P-value (δ) <0.05 (N) 0.82 (N) 1 (N) 0.31 (N) 0.10 (N) 0.10 (N) 0.17 (S) 1(N) 0.59 (N) 1 (N)

Push Down Refactoring impact -10 0 0 3 0 0 1 -15 -3 -7
Method Behavior ↓ - - ↑ - - ↑ ↓ ↓ ↓

P-value (δ) <0.05 (M) 1 (N) 1 (S) 1 (N) 1 (N) 1 (N) 0.10 (N) <0.05 (M) <0.05 (N) <0.05 (S)
Pull Up Attribute Refactoring impact -4 0 0 0 0 0 -2 -9 0 -10

Behavior ↓ - - - - - ↓ ↓ - ↓
P-value (δ) <0.05 (S) 1 (N) 1 (N) 0.08 (N) <0.05 (N) <0.05 (N) <0.05(N) <0.05 (S) 0.08 (N) <0.05 (M)

Pull Up Method Refactoring impact -11 2 1 2 0.01 0.01 -3 -16 -7 -5
Behavior ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
P-value (δ) <0.05 (M) 0.51 (N) 1 (N) <0.05 (N) 1 (N) 1 (N) 0.03 (N) <0.05 (M) <0.05 (S) <0.05 (S)

Extract Super Refactoring impact -9 -8 0 0 0 0 -10 -24 -1 -8
Class Behavior ↓ ↓ - - - - ↓ ↓ ↓ ↓

P-value (δ) <0.05(M) <0.05 (S) 0.88 (N) 0.09 (N) 1 (N) 1 (N) <0.05 (M) <0.05 (M) 1 (N) <0.05 (S)
Move Class Refactoring impact 0 0 -1 2 0 0 -1 -6 -1 -3

Behavior - - ↓ ↑ - - ↓ ↓ ↓ ↓
P-value (δ) <0.05 (S) 1 (N) 0.17 (N) <0.05 (N) 1 (N) 1 (N) <0.05 (N) <0.05 (N) 0.10 (N) <0.05 (S)

C
on

tr
ol

G
ro

up

Commit change Change commit -1 0 0 -3 0 0 0 10 1 0
Behavior ↓ - - ↓ - - - ↑ ↑ -
P-value (δ) 0.08 (N) 0.11 (N) 0.73 (N) 0.10 (N) 0.97 (N) 0.97 (N) 0.07 (N) <0.05 (S) <0.05 (N) 0.34 (N)

Legend:
Metric improvement: Low High
Metric disprovement: Low High
Effect size: L: Large, M: Medium, S: Small, N: Negligible
Behavior: “↑” : indicates that the metrics increased; “↓” : indicates that the metric decreased; “-” : indicates that the metric remains unaffected.

11 with a medium effect size. These refactorings are typically
applied when classes or subclasses grow and develop indepen-
dently of one another, causing identical (or similar) methods
each having its own dependencies. They often help reducing
duplicate code, replacing inheritance with delegation and vice
versa as well as reducing dependencies through polymorphism.
Furthermore, Move Method or Extract And Move Method
tend to significantly improve CBO by a median value of
8, each with a small effect size. Typically, these method-
level move refactorings help organizing functionalities across
classes and thus reduce dependencies between them. Overall,
as shown in Table VI, the CBO variation for all refactorings
is significant and accompanied with a medium or small effect
size depending on the refactoring type. Particularly, the effect
size is negligible for the Inline Method, as it could be applied
either in methods from the same class or from different classes.
Only the latter can help reducing coupling.

2) RFC: As it can be seen from the beanplots in Figure 3
and Table III, Extract And Move Method, and Move Attribute
are the most influential refactoring that improve RFC by
11 and 9, respectively. Moreover, Extract Super Class have
shown to improve RFC by a median score of 8, while less
impact is observed by both Extract Method and Move Method
refactorings with a median of 4, each.

3) NOSI: From Figure 3 and Table VI, we observe that
the NOSI metric has not been impacted by any of the ap-
plied refactorings since when comparing the distributions of
values before and after refactoring, no statistically significant
difference is observed. This is not very surprising, as most of
refactorings do not have a direct impact on static methods.

It is worth noting that our findings in Android apps share
some similarities with desktop apps for the coupling which is
positively impacted after applying the refactoring [36], [43].
Moreover, the the Extract Method and Move Method refactor-
ings are applied in both Android and desktop applications to
improve the coupling [13], [20].

To observe the salient impacts of refactoring on cou-
pling, we refer to a real world example from our dataset
showing the impact of a Move Method refactoring on cou-
pling metrics, from the WordPress-Android app, in the com-
mit [1]. The commit’s refactoring consists of moving of
the method showJetpackSettings() from the class
EditPostActivity to the class ActivityLauncher.
Interestingly, this Move Method refactoring resulted in a
coupling reduction for the ActivityLauncher class, with
a drop of its CBO from 18 to 13 and its RFC from 33
to 31. Looking deeper into the the source code to un-
derstand the reason behind these improvements, we find
that the “Start Jetpack security settings” activity was ini-
tially launched from the ActivityLauncher class via the
startActivity() method. This method use the intent
object to start this activity. However, intent was intitially
implemented in the showJetpackSettings() method in
the EditPostActivity. As consequence, each time this activ-
ity is launched, the class ActivityLauncher calls the
showJetpackSettings() method. Thus, this refactoring
helped moving the method to the class that uses it most which
decreased the number of dependencies between both classes,
resulting in an improvement in both CBO and RFC.



Finding 1. Refactoring has a significant positive impact on
coupling in terms of both the CBO and RFC metrics, while
no significant impact was found on the NOSI metric. The
most influential refactorings that promote low coupling are
“Move Method”, and “Extract And Move Method”.

B. Results for Cohesion Metrics

Cohesion assesses the degree to which the responsibilities
implemented in a class belong together [47]. High cohesion is
desirable since it promotes encapsulation and adherence to the
Single Responsibility Principle, one of the SOLID design prin-
ciples [25]. In this study, we consider three cohesion metrics,
the first metric is the normalized [39], considering the shared
instance variables between method pairs of a class. If the value
of this metric is low, it indicates a strong cohesiveness of the
class. The second cohesion metric is TCC, which considers
the direct connection of public methods in a class. The third
is LCC, which is similar to TCC but additionally considers
the indirect connection of public methods in a class. TCC and
LCC provide another way of measuring the cohesiveness of
a class. The higher the TCC and LCC a values are, the more
cohesive is the class. It is anticipated that cohesion may be
improved by moving-related refactoring operations. In general,
moving a method that does not access local attributes or
methods, or is called by few local methods improves cohesion.

1) LCOM: The beanplots from Figure 3 and Table VI show
that LCOM is improved when applying Move Method and
Extract And Move Method refactorings. For both refactorings,
the median values significantly decreased by 2, even though
they are accompanied by a small effect size. However, we also
observe from the results in Table VI that the Move Attribute,
Pull Up Method and Move Class refactorings caused LCOM
metric to disprove by a median of 1 and 2 with a negligible
effect size. These results suggest that the LCOM metric can
either improve or disprove after refactoring, and developers
need to pay attention to cohesion when modifying their code
and use appropriate refactoring operations.It is worth noting
that our results match previous work observations for the
cohesion, i.e., cohesion worsens rather than improves after the
refactoring application [20], [48].

2) TCC: As can be seen in beanplots of Figure 3 and
Table VI, Extract And Move Method is the most influential
refactoring on TCC which improve it by 0.7. Whereas, Move
Method and Move Attribute refactorings tend to have less
impact on the metrics with a median improvement of 0.3,
0.1, respectively. It is worth noting that the differences are
statistically significant even though with negligible effect size.

3) LCC: We found that LCC achieves similar results to
the TCC metric. This was expected since both metrics re-
flect similar cohesion characteristic as mentioned earlier in
Section IV-B, except that LCC further involves the number
of indirect connections between visible classes. Thus, the
constraint LCC ≥ TCC holds always. Upon a qualitative
investigation of our dataset, we observe that moving methods
from one class to another is a popular and effective refactoring
to improve cohesion, as it often involves adding a parameter

when resources of the original class are used, and removing
that parameter which is an instance of the target class.

As an illustrative example, we refer to the WordPress-
Android app from the commit [2], we observe that the
method onDraw() is moved from GraphView class to
the GraphViewContentView class which makes the class
GraphView more cohesive with an improvement in each of
TCC and LCC from 0.2 to 0.5 and an improvement of LCOM
from 32 to 28.

Finding 2. Cohesion quality metrics, LCOM, TCC and
LCC, tend to exhibit statistically significant variations
with attribute and method-level moving-related refactoring
operations. The refactorings that most influence cohesion
are “Move Attribute”, “Move Method” and “Extract And
Move Method”. However, LCOM tend to be more volatile
under refactoring, which suggests Android developers to
pay attention when dealing with cohesion.

C. Results for Complexity Metrics

Reducing code complexity is one of the main challenges
in any software system and one of the prominent goals of
refactoring. We use the Weighted Methods per Class (WMC)
to assess class complexity [17]. WMC for a given class is
computed as the sum of the McCabe’s cyclomatic complexity
of its methods [32]. Being a direct metric, the higher WMC,
the higher is the class complexity.

The distributions of the WMC metric depicted in Figure 3
and Table VI indicate a significant improvement after applying
Extract Super Class refactoring by a median value of 10
with a medium effect size. Indeed, this refactoring operation
is effective to remove code duplication and thus reducing
complexity. Duplicate code often occurs when two classes
perform similar tasks in the same way, or perform similar tasks
in different ways. As a consequence, extracting a superclass
can concentrate similar tasks and provide a built-in mechanism
for simplifying such situations and removing duplicate code
via inheritance. Moreover, various other refactorings tend to
also improve WMC including Move Method, Extract And
Move Method, Pull Up Attribute, Extract Method, and Move
Class refactorings, but with less impact varying from 1 to
3 with negligible or small effect size. These improvements
are expected since the applied refactoring operations deal
with the simplification of methods inside a class. Particularly,
the extraction of sub-methods that tend to break down long
methods, or moving the methods to the appropriate class which
decrease the complexity of the methods in the class.

An interesting example that shows the impact of Ex-
tract Method refactoring on complexity was found in the
ownCloud app from commit [3] that involves the extrac-
tion of readIsDeveloper() method from onCreate()
method in the MainApp class and the extraction of
showDeveloperItems() method of onCreate() in the
Preferences class. These refactorings reduce the complex-
ity by decreasing the WMC metric from 7 to 3. Even though
this commit is part of a pull request (# 13401), the developer
tend to take care of the quality through refactoring commits.



Finding 3. Several refactorings types tend to improve com-
plexity by decreasing the WMC metric. The most impactful
refactorings are “Extract Super Class”, “Extract Method”,
and “Move Method” which typically help simplifying meth-
ods structure and/or reducing duplicate code.

D. Results for Design Size Metrics

The design size is an indication of code density. We use
two common metrics to estimate the size. The first is the
Lines of Code (LOC) which counts the number of lines of
code ignoring spaces and comments. The second metric is the
Variables Quantity (VQTY) that counts the number of declared
variables.

1) LOC: As shown in Figure 3 and Table VI, the refac-
torings Extract Super Class, Pull Up Method, Push Down
Method, Move Method, and Extract And Move Method are
the most influential refactorings that improve the LOC with a
median ranging from 12 to 24 and a medium effect size. We
notice that the size of the code elements significantly improve
after the application of inheritance-related refactorings, as well
as composing and moving method refactorings. For example,
developers tend to apply Extract Super Class to reduce the
size of its subclasses and reduce duplicated code, or Extract
And Move Method to avoid code duplication and simplify the
structure of the code.

2) VQTY: We observe from the results in Figure 3 and
Table VI that VQTY is less impacted by refactoring than LOC
with only 3 refactorings including Move Attribute, Pull Up
Method, and Push Down Method which reduce significantly
the Quantity variables metric with either negligible or small
effect size. Similar to LOC, we speculate that moving and
inheritance-related refactorings help reducing code duplication
which will in turn reduce the number of declared variables in
code fragments and/or improve code reuse. It is worth noting
that our results match also with desktop applications [13], [20].
As an illustrative example, we refer to the WordPress-Android
app, commit [4] which implements an Extract Super Class.
The refactoring extracted the class TagsFragment from
PostSettingsTagsFragment which clearly resulted in
a reduced size.

Finding 4. Most refactoring types tend to reduce the
design size metrics LOC and VQTY. The most influential
refactorings are Extract Super class, Pull UP/Push Down
Method and Move Method which typically help reducing
duplicate code, or moving code between classes, hence
improving the design size.

E. Inheritance

The inheritance is a key concept in any object-oriented (OO)
programming infrastructure such as Android. Designing and
implementing the inheritance relations in an Android app is
expected to improve the overall quality of the app such as
software reuse and extensibility. The depth of inheritance tree
(DIT) is the most used metric to assess the inheritance in OO
software applications.

We notice from Figure 3 and Table VI that five from
all the applied refactorings do improve the DIT metric, in-
cluding Pull Up Attribute, Extract Super Class, Push Down
Method, Pull Up Method, and Move Class. The majority
of these refactorings deal with changes applied to the class
hierarchy. We expect that refactoring types that are mainly
managing class inheritance do impact the DIT metric. A
recent study showed that inheritance-related refactorings such
as Extract Super Class and Pull Up Method tend to improve
the depth of the inheritance to support software reusability
and help in the elimination of code duplication [7]. Our
qualitative analysis has shown scenarios of moving method
down, from a super class, to a child class, for the purpose
of sharing its behavior which is relevant only for some of
its subclasses. One of the examples that show the inheritance
improvement was found in the Nextcloud app, in commit ID
[5]. Specifically, the developer applied a Push Down Method
refactoring operations involving the class AbstractIT and
its subclass AbstractOnServerIT. This was realized
through pushing down the after(), deleteAllFiles(),
createDummyFiles() and waitForServer() meth-
ods from AbstractIT to its subclass. These changes re-
sulted in inheritance improvement for the AbstractIT class,
with a drop of its DIT from 5 to 3.

Finding 5. Hierarchy-level refactorings tend to improve
the inheritance quality attribute (DIT). The most influential
refactorings being “Pull Up Attribute”, “Extract Super
Class” and “Push Down Method”. Improving the inheri-
tance typically helps sharing common behavior across sub-
classes, reduces code duplication, and increases reusability
which is a common practice in Android development.

Looking at the control group results from Figure 4 and
Table VI, we noticed that the different quality metrics did not
exhibit any significant change with non-refactoring changes
(control group), except for the LOC and VQTY metrics that
tend to increase after each commit. Indeed, it is normal that
the design size related metrics increase over time as the project
evolves. These results provide more evidence that the metrics
changes observed in the experiment data are due to refactoring
activities and not to chance.

V. IMPLICATIONS AND DISCUSSIONS

A. Implications for researchers

Further exploit quality metrics and refactoring in mo-
bile software development. The existing literature discusses
different automatic refactoring approaches that help practition-
ers in detecting anti-patterns or code smells. More recently,
Baqais and Alshayeb [11] show that there is an increase in
the number of studies on automatic refactoring approaches
and researchers have begun exploring how machine learning
can be used in identifying refactoring opportunities. Since
the features play a vital role in the quality of the obtained
machine learning models, this study can help determine which
metrics can be used as effective features in machine learning
algorithms to accurately predict refactoring opportunities at



different levels of granularity (i.e., class, method, field), which
can assist developers in automatically making their decisions.
For example, using the most impactful metrics as a feature
to predict whether a given piece of code should undergo a
specific refactoring operation make developers more confident
in accepting the recommended refactoring. Such knowledge is
needed as, in practice, the built model should require as little
data as possible.

B. Implications for practitioners

Android developers should be careful about their apps
code quality. Our results indicate that developers can apply
refactoring operations that do not improve their apps structural
quality during refactoring, and particularly for the cohesion
metric, LCOM. While LCOM tend to be very volatile under
refactoring as also shown in prior works [38], [41], these
results indicate that there is a risk that developers degrade their
apps structural quality while performing refactoring changes.
Given that Android apps should evolve quickly to add new user
requirements, fix bugs or adapt to new technological changes,
such refactorings may increase technical debt and thus cause
developers to invest additional maintenance effort in the future
in order to fix quality issues in their apps. Hence, developers
need to pay attention to their refactoring edits.

Need for Android-specific refactoring tools. Our findings
on the impact of refactoring on quality attributes/metrics can
help build practical and customized refactoring recommen-
dation tool for Android developers. For example, given the
relatively small size and rapid evolution and release cycles of
mobile apps, it is relevant to recommend refactoring opportu-
nities for classes suffering from specific quality aspects, e.g.,
coupling, complexity, etc.

C. Implications for educators

Learn refactoring best practices. Teaching the next gen-
eration of engineers best practices on refactoring and its
impact on software quality in mobile apps and in software
development, in general. Educators can use our study results
and our dataset [44] to teach and motivate students to follow
best refactoring practices while avoiding refactoring changes
that may cause regression in their apps. In particular, our
real world dataset of 42,181 refactorings from 300 Android
apps, represents a valuable resource that could enable the
introduction of refactoring to students using a “learn by
example” methodology, illustrating best refactoring practices
that should be followed and bad practices to be avoided.

VI. THREATS TO VALIDITY

Threat to internal validity. The accuracy of the refactoring
detection tool, Refactoring Miner, can represent a threat to
internal validity because it may miss the detection of some
refactorings. However, previous studies report that Refactoring
Miner has high precision and recall scores (98% and 87%,
respectively) compared to other state-of-the-art refactoring de-
tection tools [45], [51], which gives us confidence in using the
tool. Furthermore, the CK-metrics tool could also have its own
threats. While we conducted a manual inspection and double

checked the values of the studied metrics with an alternative
commercial tool, namely Scitools Understand, to make sure
that the tool is reliable, still there could be errors that we did
not notice. Another threat to internal validity could be related
to the size of commit changes. In particular, the metric change
in a given refactoring commit may or may not be related to the
refactoring itself that occurred in that commit. To mitigate this
problem, we adopted a widely-used causal inference method
based on the Difference-in-Differences model that compare
two groups, a treatment and a control group.

Threats to construct validity. A potential construct threat to
validity could be related to the set of metrics being studied,
as it may miss some properties of the selected internal quality
attributes. To mitigate this threat, we select well-known met-
rics that cover various properties of each attribute, as reported
in the literature [6], [17].

Threats to conclusion validity. Unlike other works on the
impact of refactoring on quality metrics [6], [13], [15], [48],
we employed the DiD method to compare the changes in
quality metrics between a treatment and control group. More-
over, we used the non-parametric Wilcoxon rank-sum test and
the Cliff’s effect size, that do not make assumptions on the
underlying data. As part of our future work, we plan to explore
other quality aspects in mobile apps.

Threat to external validity. While we used a large sample
of 300 open source Android apps written in Java, we cannot
generalize our results to other open source or commercial
mobile apps or to other technologies.

VII. CONCLUSION AND FUTURE WORK

We presented a study aimed at investigating the impact of
refactoring on quality metrics in Android apps. We mined 300
open-source apps containing 42,181 refactoring operations in
total. We determined the effect each refactoring had upon
the 10 chosen software quality metrics, and employed the
difference-in-differences (DiD) model to determine the extent
to which the metric changes brought about by refactoring differ
from the metric changes in non-refactoring commits.

In one sense, our anticipated results were that the benefits of
refactoring would be clearly reflected in the changes brought
about in the software metrics. The observed results were not
that simple however. For most refactoring type and metric
combinations, the refactoring produced no significant change
in the metric. On the other hand, some refactoring types
yielded a broad improvement in several metric values. LCOM
stood out as the least consistent metric, improving for some
refactoring types and disimproving for others. For the non-
refactoring commits, the metrics exhibit no significant change,
other than (unsurprisingly) the design size metrics.

As future work, we plan to analyze other refactoring types
and investigate their impact on internal and external quality
attributes. We also plan to extend our study to more open
source and commercial Android apps to better generalize our
results, and to develop Android specific refactoring tools to
better support developers during maintenance and evolution.



REFERENCES

[1] Move Method, WordPress-Android https://github.
com/wordpress-mobile/WordPress-Android/commit/
ead8683e044a70fb3b288d562966c7ed442b8925. (Accessed on
05/02/2021).

[2] Move Method, WordPress-Android https://github.
com/wordpress-mobile/WordPress-Android/commit/
71a2b5277623415a7657accefc57c6599455aa3c. (Accessed on
05/02/2021).

[3] Extract Method, WordPress-Android https://github.com/owncloud/
android/commit/7e460488f7fb2179c4476332dd5142a110450297.
(Accessed on 05/02/2021).

[4] Extract Super Class, WordPress-Android https://
github.com/wordpress-mobile/WordPress-Android/commit/
3ff275dbf59b685666cc56ba8d094c1744955a5a. (Accessed on
05/02/2021).

[5] Push Down Method, NextCloud app https://github.com/nextcloud/
android/commit/db6c1ba0554e5468ad568efe52c862c99ba7379c. (Ac-
cessed on 05/02/2021).

[6] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini. On the
impact of refactoring on the relationship between quality attributes and
design metrics. In ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pages 1–11. IEEE,
2019.

[7] E. A. AlOmar, P. T. Rodriguez, J. Bowman, T. Wang, B. Adepoju,
K. Lopez, C. Newman, A. Ouni, and M. W. Mkaouer. How do developers
refactor code to improve code reusability? In International Conference
on Software and Software Reuse, pages 261–276. Springer, 2020.

[8] M. Alshayeb. Empirical investigation of refactoring effect on software
quality. Information and software technology, 51(9):1319–1326, 2009.

[9] J. D. Angrist and J.-S. Pischke. Mostly harmless econometrics: An
empiricist’s companion. Princeton university press, 2008.

[10] M. Aniche. Ck-metrics. https://github.com/mauricioaniche/ck,, 2016.
Accessed: 2020-01-09.

[11] A. A. B. Baqais and M. Alshayeb. Automatic software refactoring: a
systematic literature review. Software Quality Journal, 28(2):459–502,
2020.

[12] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on
software engineering, 22(10):751–761, 1996.

[13] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An
experimental investigation on the innate relationship between quality and
refactoring. Journal of Systems and Software, 107:1–14, 2015.

[14] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez. Understanding the impact of
refactoring on smells: A longitudinal study of 23 software projects. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 465–475, 2017.

[15] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi. Does refactoring improve
software structural quality? a longitudinal study of 25 projects. In 30th
Brazilian Symposium on Software Engineering, pages 73–82, 2016.

[16] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia. How
does refactoring affect internal quality attributes? a multi-project study.
In 31st Brazilian Symposium on Software Engineering, pages 74–83,
2017.

[17] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[18] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3):494, 1993.

[19] T. Das, M. Di Penta, and I. Malavolta. A quantitative and qualitative
investigation of performance-related commits in android apps. In 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 443–447. IEEE, 2016.

[20] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim, L. Sousa,
and W. Oizumi. Refactoring effect on internal quality attributes: What
haven’t they told you yet? Information and Software Technology,
126:106347, 2020.

[21] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts. Refactoring:
Improving the Design of Existing Code. 1999.

[22] B. Geppert, A. Mockus, and F. Robler. Refactoring for changeability:
A way to go? In 11th IEEE International Software Metrics Symposium,
page 10, 2005.

[23] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE
Transactions on Software engineering, 31(10):897–910, 2005.

[24] G. Hecht, N. Moha, and R. Rouvoy. An empirical study of the
performance impacts of android code smells. In Proceedings of the
international conference on mobile software engineering and systems,
pages 59–69, 2016.

[25] B. Joshi. Beginning solid principles and design patterns for asp.net
developers. Apress, 2016.

[26] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evalu-
ation of maintainability enhancement by refactoring. In International
Conference on Software Maintenance, 2002. Proceedings., pages 576–
585. IEEE, 2002.

[27] M. Kessentini and A. Ouni. Detecting android smells using multi-
objective genetic programming. In IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft),
pages 122–132, 2017.

[28] M. M. Lehman. Laws of software evolution revisited. In European
Workshop on Software Process Technology, pages 108–124. Springer,
1996.

[29] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chrisochoides.
Modeling class cohesion as mixtures of latent topics. In IEEE Interna-
tional Conference on Software Maintenance, pages 233–242, 2009.

[30] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago. How
maintainability issues of android apps evolve. In IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
334–344, 2018.

[31] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen.
Understanding code smells in android applications. In IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 225–236. IEEE, 2016.

[32] T. J. McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[33] R. Minelli and M. Lanza. Software analytics for mobile applications-
insights and lessons learned, 2013.

[34] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,
and A. Ouni. Many-objective software remodularization using nsga-iii.
ACM Transactions on Software Engineering and Methodology (TOSEM),
24(3):1–45, 2015.

[35] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol.
Earmo: An energy-aware refactoring approach for mobile apps. IEEE
Transactions on Software Engineering, 44(12):1176–1206, 2017.

[36] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi. A
case study on the impact of refactoring on quality and productivity in an
agile team. In IFIP Central and East European Conference on Software
Engineering Techniques, pages 252–266. Springer, 2007.

[37] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how
we know it. IEEE Transactions on Software Engineering, 38(1):5–18,
2011.

[38] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam. Experimental assessment of software metrics
using automated refactoring. In Proceedings of the ACM-IEEE
international symposium on Empirical software engineering and
measurement, pages 49–58, 2012.

[39] E. Okike. A proposal for normalized lack of cohesion in method (lcom)
metric using field experiment. IJCSI International Journal of Computer
Science Issues, 7(4):19–26, 2010.

[40] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb. Multi-
criteria code refactoring using search-based software engineering: An
industrial case study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(3):1–53, 2016.

[41] M. Paixao, M. Harman, Y. Zhang, and Y. Yu. An empirical study of
cohesion and coupling: Balancing optimization and disruption. IEEE
Transactions on Evolutionary Computation, 22(3):394–414, 2017.

[42] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia.
On the impact of code smells on the energy consumption of mobile
applications. Information and Software Technology, 105:43–55, 2019.

[43] J. Pantiuchina, M. Lanza, and G. Bavota. Improving code: The (mis)
perception of quality metrics. In IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 80–91, 2018.

[44] Replication package. https://github.com/stilab-ets/Android-refactoring,
2021.

https://github.com/wordpress-mobile/WordPress-Android/commit/ead8683e044a70fb3b288d562966c7ed442b8925
https://github.com/wordpress-mobile/WordPress-Android/commit/ead8683e044a70fb3b288d562966c7ed442b8925
https://github.com/wordpress-mobile/WordPress-Android/commit/ead8683e044a70fb3b288d562966c7ed442b8925
https://github.com/wordpress-mobile/WordPress-Android/commit/71a2b5277623415a7657accefc57c6599455aa3c
https://github.com/wordpress-mobile/WordPress-Android/commit/71a2b5277623415a7657accefc57c6599455aa3c
https://github.com/wordpress-mobile/WordPress-Android/commit/71a2b5277623415a7657accefc57c6599455aa3c
https://github.com/owncloud/android/commit/7e460488f7fb2179c4476332dd5142a110450297
https://github.com/owncloud/android/commit/7e460488f7fb2179c4476332dd5142a110450297
https://github.com/wordpress-mobile/WordPress-Android/commit/3ff275dbf59b685666cc56ba8d094c1744955a5a
https://github.com/wordpress-mobile/WordPress-Android/commit/3ff275dbf59b685666cc56ba8d094c1744955a5a
https://github.com/wordpress-mobile/WordPress-Android/commit/3ff275dbf59b685666cc56ba8d094c1744955a5a
https://github.com/nextcloud/android/commit/db6c1ba0554e5468ad568efe52c862c99ba7379c
https://github.com/nextcloud/android/commit/db6c1ba0554e5468ad568efe52c862c99ba7379c
https://github.com/mauricioaniche/ck
https://github.com/stilab-ets/Android-refactoring


[45] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions
of github contributors. In ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 858–870, 2016.

[46] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based refactoring.
In Proceedings fifth european conference on software maintenance and
reengineering, pages 30–38. IEEE, 2001.

[47] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, 1974.

[48] K. Stroggylos and D. Spinellis. Refactoring–does it improve software
quality? In International Workshop on Software Quality (WoSQ), pages
10–10, 2007.

[49] G. Szóke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy. Bulk fixing
coding issues and its effects on software quality: Is it worth refactoring?
In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation, pages 95–104. IEEE, 2014.

[50] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In European
Conference on Software Maintenance and Reengineering, pages 183–
192. IEEE, 2003.

[51] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig.
Accurate and efficient refactoring detection in commit history. In
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 483–494. IEEE, 2018.

[52] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and
D. Dig. Accurate and efficient refactoring detection in commit history.
In International Conference on Software Engineering, pages 483–494,
2018.

[53] A. Uchôa, C. Barbosa, W. Oizumi, P. Blenilio, R. Lima, A. Garcia,
and C. Bezerra. How does modern code review impact software design
degradation? an in-depth empirical study. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
511–522. IEEE, 2020.

[54] F. Wilcoxon, S. Katti, and R. A. Wilcox. Critical values and probability
levels for the wilcoxon rank sum test and the wilcoxon signed rank test.
Selected tables in mathematical statistics, 1:171–259, 1970.

[55] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering. Springer Science
& Business Media, 2012.

[56] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design
differencing. In IEEE/ACM international Conference on Automated
software engineering, pages 54–65, 2005.


	Introduction
	Related work
	Study Design
	Context and Dataset
	Empirical Study Setup
	Step 1: Android apps selection
	Step 2: Refactorings detection
	Step 3: Commit changes extraction
	Step 4: Non-refactoring changes extraction
	Step 5: Quality metrics measurement
	Step 6: Refactoring Impact Analysis

	Replication package

	Empirical study results
	Results for Coupling Metrics
	CBO
	RFC
	NOSI

	Results for Cohesion Metrics
	LCOM
	TCC
	LCC

	Results for Complexity Metrics
	Results for Design Size Metrics
	LOC
	VQTY

	Inheritance

	Implications and Discussions
	Implications for researchers
	Implications for practitioners
	Implications for educators

	Threats to validity 
	Conclusion and Future Work
	References

