
High Dimensional Search-based Software Engineering: 

Finding Tradeoffs Among 15 Objectives for Automating
Software Refactoring Using NSGA-III 

ABSTRACT
There is a growing need for scalable search-based software 
engineering approaches that address software engineering problems 
where a large number of objectives are to be optimized. Software 
refactoring is one of these problems where a refactoring sequence is 
sought that optimizes several software metrics. Most of the existing 
refactoring work uses a large set of quality metrics to evaluate the 
software design after applying refactoring operations, but current 
search-based software engineering approaches are limited to using a 
maximum of five metrics. We propose for the first time a scalable 
search-based software engineering approach based on a newly 
proposed evolutionary optimization method NSGA-III where there 
are 15 different objectives to be optimized. In our approach, 
automated refactoring solutions are evaluated using a set of 15 
distinct quality metrics. We evaluated this approach on seven large 
open source systems and found that, on average, more than 92% of 
code smells were corrected. Statistical analysis of our experiments 
over 31 runs shows that NSGA-III performed significantly better than 
two other many-objective techniques (IBEA and MOEA/D), a multi-
objective algorithm (NSGA-II) and two mono-objective approaches, 
hence demonstrating that our NSGA-III approach represents the new 
state of the art in fully-automated refactoring. 

Categories and Subject Descriptors
D.2 [Software Engineering]. 

General Terms
Algorithms, Reliability. 

Keywords
Search-based software engineering, software quality, code smells, 
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1. INTRODUCTION
Search-based software engineering (SBSE) studies the application of 
meta-heuristic optimization techniques to software engineering 

problems [1]. Once a software engineering task is framed as a search 

problem, by defining it in terms of solution representation, objective 

function, and solution change operators, there are a multitude of 
search algorithms that can be applied to solve that problem. Search-
based techniques are widely applied to solve software engineering 
problems such as in testing, modularization, refactoring, planning, 

etc. [15][13].  

Based on a recent SBSE survey [15], the majority of existing work 

treats software engineering (SE) problems from a single-objective 
point of view, where the main goal is to maximize or minimize one 
objective, e.g., correctness, quality, etc. However, most SE problems 
are naturally complex in which many conflicting objectives need to 
be optimized such as model transformation, design quality 
improvement, test suite generation etc. The number of objectives to 
consider for most of software engineering problems is, in general, 
high (more than three objectives); such problems are termed many-
objective. We claim that the reason that software engineering 
problems have not been formulated as many-objective problems is 
because of the challenges in constructing a many-objective solution. 
In this context, the use of traditional multi-objective techniques, e.g., 

NSGA-II [8], widely used in SBSE, is clearly not sufficient. 

There is a growing need for scalable search-based software 
engineering approaches that address software engineering problems 
where a large number of objectives are to be optimized. Improving 
the scalability of SBSE approaches will increase their applicability in 
industry and real-world settings. Recent work in optimization has 
proposed several solution approaches to tackle many-objective 

optimization problems [17][30] using e.g., objective reduction, new 

preference ordering relations, decomposition, etc. However, these 

techniques have not yet been widely explored in SBSE [6]. To the 

best of our knowledge and based on recent SBSE surveys [15], only 

one work exists proposed by Abdel Salam et al. [26] that uses a 

many-objective approach, IBEA (Indicator-Based Evolutionary 

Algorithm) [31], to address the problem of software product line 

creation. However, the number of considered objectives is limited to 
5. 
Software refactoring is one of those software engineering problems 
where there are several objectives to be satisfied. Refactoring 
improves the design of a system by changing its internal structure 

without altering its external behavior [12], and is widely used to fix 

code smells. Code smells are known to have a negative impact on 

quality attributes such as flexibility or maintainability [4][29]. 

Software engineers often introduce code smells unintentionally 
during the initial design or during software development due to bad 
design decisions, ignorance or time pressure. Most of the existing 
refactoring work uses a set of more than five quality metrics to 
evaluate the quality of software design after applying refactoring 
operations. In this paper, we propose for the first time a scalable 

search-based software engineering approach based on NSGA-III [7] 

where there are 15 different objectives to optimize. Thus, in our 
approach, automated refactoring solutions will be evaluated using a 
set of 15 software quality metrics. NSGA-III is a very recent many-
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objective algorithm proposed by Deb et al. [7]. The basic framework 

remains similar to the original NSGA-II algorithm [8], with 

significant changes in its selection mechanism. This paper represents 
the first real-world application of NSGA-III and the first scalable 
work that supports the use of 15 objectives to address a software 
engineering problem. 
We implemented our approach and evaluated it on seven large open 
source systems and found that, on average, more than 92% of code 
smells were corrected. The statistical analysis of our experiments over 
31 runs shows that NSGA-III performed significantly better than two 
other many-objective techniques (IBEA and MOEA/D), a multi-
objective algorithm (NSGA-II) and two mono-objective approaches 

[19][23]. 

2. MANY-OBJECTIVE SEARCH-BASED

SOFTWARE ENGINEERING 
By definition, a many-objective problem is a multi-objective one but 

with a high number of objectives M, i.e., M > 3. Analytically, it could 

be stated as follows [5]:  
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where M is the number of objective functions and is strictly greater 

than 3, P is the number of inequality constraints, Q is the number of 

equality constraints, L
ix  and U

ix  correspond to the lower and upper 

bounds of the decision variable ix  (i.e., ith component of x). A

solution x  satisfying the (P+Q) constraints is said to be feasible and

the set of all feasible solutions defines the feasible search space 

denoted by Ω. 

In this formulation, we consider a minimization multi-objective 

problem (MOP) since maximization can be easily turned to 

minimization based on the duality principle. Over the two past 

decades, several Multi-Objective Evolutionary Algorithms (MOEAs) 

have been proposed with the hope to work with any number of 

objectives M. Unfortunately, It has been demonstrated that most 

MOEAs are ineffective in handling such type of problems. For 

example, NSGA-II [8], which is one of the most used MOEAs, 

compares solutions based on their non-domination ranks. Solutions 

with best ranks are emphasized in order to converge to the Pareto 

front. When M > 3, only the first rank may be assigned to every 

solution as almost all population individuals become non-dominated 

with each other. Without a variety of ranks, NSGA-II cannot keep the 

search pressure anymore in high dimensional objective spaces.  

The difficulty faced when solving many-objective problems could be 

summarized as follows. Firstly, most solutions become equivalent 

between each other according to the Pareto dominance relation which 

deteriorates dramatically the search process ability to converge 

towards the Pareto front and the MOEA behaviour becomes very 

similar to the random search one. Secondly, a search method requires 

a very high number of solutions (some thousands and even more) to 

cover the Pareto front when the number of objectives increases. For 

instance, it has been shown that in order to find a good 

approximation of the Pareto front for problems involving 4, 5 and 7 

objective functions, the number of required non-dominated solutions 

is about 62 500, 1 953 125 and 1 708 984 375 respectively [17]; 

which makes the decision making task very difficult. Thirdly, the 

objective space dimensionality increases significantly, which makes 

promising search directions very hard to find. Fourthly, the diversity 

measure estimation becomes very computationally costly since 

finding the neighbors of a particular solution in high dimensional 

spaces is very expensive. Fifthly, recombination operators become 

inefficient since population members are likely to be widely distant 

from each other which yields to children that are not similar to their 

parents; thereby making the recombination operation inefficient in 

producing promising offspring individuals. Finally, although it is not 

a matter that is directly related to optimization, the Pareto front 

visualization becomes more complicated, therefore making the 

interpretation of the MOEA’s results more difficult for the user.  

According to a recent survey by Harman et al. [13], most software 

engineering problems are multi-objective by nature. However, most 

of existing approaches to address software engineering problems such 

as model transformation, design quality improvement, test suite 

generation, etc. are based on a mono-objective view. Multi-objective 

optimization techniques have been proposed in a few works [26][24] 

for such problems and they satisfy up to 5 objectives. However, as 

with any other practical domain, most software engineering problems 

involve optimizing more than this number of objectives. Thus, more 

scalable search-based software engineering approaches will be 

beneficial to handle rich objective spaces. We investigate, in this 

paper, the applicability of many-objective techniques for the software 

refactoring problem where up to 15 objectives are considered to 

evaluate refactoring suggestions. 

3. MANY-OBJECTIVE SOFTWARE

REFACTORING USING NSGA-III 

3.1 NSGA-III 
NSGA-III is a very recent many-objective algorithm proposed by Deb 

et al. [7]. The basic framework remains similar to the original NSGA-

II algorithm [8] with significant changes in its selection mechanism. 

Figure 2 gives the pseudo-code of the NSGA-III procedure for a 

particular generation t. First, the parent population Pt (of size N) is 

randomly initialized in the specified domain, and then the binary 

tournament selection, crossover and mutation operators are applied to 

create an offspring population Qt. Thereafter, both populations are 

combined and sorted according to their domination level and the best 

N members are selected from the combined population to form the 

parent population for the next generation. The fundamental difference 

between NSGA-II and NSGA-III lies in the way the niche 

preservation operation is performed. Unlike NSGA-II, NSGA-III 

starts with a set of reference points Zr. After non-dominated sorting, 

all acceptable front members and the last front Fl that could not be 

completely accepted are saved in a set St. Members in St/Fl are 

selected right away for the next generation. However, the remaining 

members are selected from Fl such that a desired diversity is 

maintained in the population. Original NSGA-II uses the crowding 

distance measure for selecting well-distributed set of points, however, 

in NSGA-III the supplied reference points (Zr) are used to select these 

remaining members (cf. Figure 1). To accomplish this, objective 

values and reference points are first normalized so that they have an 

identical range. Thereafter, orthogonal distance between a member in 

St and each of the reference lines (joining the ideal point and a 

reference point) is computed. The member is then associated with the 

reference point having the smallest orthogonal distance. Next, the 

niche count ρ for each reference point, defined as the number of 

members in St/Fl that are associated with the reference point, is 

computed for further processing. The reference point having the 

minimum niche count is identified and the member from the last front 
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Fl that is associated with it is included in the final population. The 

niche count of the identified reference point is increased by one and 

the procedure is repeated to fill up population Pt+1.  

It is worth noting that a reference point may have one or more 

population members associated with it or need not have any 

population member associated with it. Let us denote this niche count 

as ρj for the j-th reference point. We now devise a new niche-

preserving operation as follows. First, we identify the reference point 

set Jmin = {j: argminj (ρj)} having minimum ρj. In case of multiple 

such reference points, one (j*Jmin) is chosen at random. If ρj* = 0 

(meaning that there is no associated Pt+1 member to the reference 

point j*), two scenarios can occur. First, there exists one or more 

members in front Fl that are already associated with the reference 

point j*. In this case, the one having the shortest perpendicular 

distance from the reference line is added to Pt+1. The count ρj* is then 

incremented by one. Second, the front Fl does not have any member 

associated with the reference point j*. In this case, the reference point 

is excluded from further consideration for the current generation. In 

the event of ρj* ≥ 1 (meaning that already one member associated 

with the reference point exists), a randomly chosen member, if exists, 

from front Fl that is associated with the reference point Fl is added to 

Pt+1. If such a member exists, the count ρj* is incremented by one. 

After ρj counts are updated, the procedure is repeated for a total of K 

times to increase the population size of Pt+1 to N.  

3.2 Adapting NSGA-III for the Software 

Refactoring Problem 

3.2.1 Problem formulation 

The refactoring problem involves searching for the best refactoring 

solution among the set of candidate ones, which constitutes a huge 

search space. A refactoring solution is a sequence of refactoring 

operations where the goal of applying the sequence to a software 

system S is typically to minimize the number of code smells in S. 

Usually in SBSE approaches, we use two or three metrics as 

objective functions for a particular multi-objective heuristic 

algorithm to find smells and correct them. However, in reality, there 

are many types of code smell and detecting the symptoms of each 

smell requires a particular set of metrics. Motivated by this 

observation, we propose in this research work to use a high number 

of metrics (15 metrics) where each represents a separate objective 

function. In this way, we obtain a many-objective (15-objective) 

formulation of the refactoring problem that could not be solved using 

standard multi-objective approaches. This formulation is given as 

follows: 

 ),...,(     
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where X is the set of all legal refactoring sequences starting from S, xi 

is the i-th refactoring operation, and fk(x,S) is the k-th metric. The 15 

metrics under consideration will be detailed in the experimental study 

since our formulation is generic and applies to any software metrics. 

3.2.2 Solution approach 
Solution representation. As defined in the previous section, a 
solution consists of a sequence of n refactoring operations applied to 
different code elements in the source code to fix. In order to represent 
a candidate solution (individual/chromosome), we use a vector-based 
representation. Each vector’s dimension represents a refactoring 
operation where the order of applying these refactoring operations 
corresponds to their positions in the vector. For each of these 
refactoring operations, we specify pre- and post-conditions in the 
style of Opdyke [12] to ensure the feasibility of their application. The 
initial population is generated by assigning randomly a sequence of 
refactorings to some code fragments. To apply a refactoring operation 
we need to specify which actors, i.e., code fragments, are 
involved/impacted by this refactoring and which roles they play in 
performing the refactoring operation. An actor can be a package, 
class, field, method, parameter, statement, or variable. 

Solution variation. In each search algorithm, the variation operators 
play the key role of moving within the search space with the aim of 
driving the search towards optimal solutions. For crossover, we use 
the one-point crossover operator. It starts by selecting and splitting at 
random two parent solutions. Then, this operator creates two child 
solutions by putting, for the first child, the first part of the first parent 
with the second part of the second parent, and vice versa for the 
second child. This operator must ensure the respect of the length 

Figure 1. Normalized reference plane for a three-objective case 

[19]. 

NSGA-III procedure at generation t 

Input: H structured reference points Zs, parent population Pt

Output: Pt+1 

00: 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

 Begin 

 St ← Ø, i ← 1; 

 Qt ← Variation (Pt); 

 Rt ← Pt  Qt; 

 (F1, F2, ...) ← Non-dominationed_Sort (Rt); 

 Repeat 

    St ← St  Fi; i ← i+1; 

 Until | St | ≥ N; 

 Fl ← Fi; /*Last front to be included*/ 

 If | St | = N then 

    Pt+1 ← St; 

 Else 

   Pt+1 ← 1
1




l
j Fj; 

   /*Number of points to be chosen from Fl*/ 

   K ← N – |Pt+1|;  

   /*Normalize objectives and create reference set Zr*/ 

   Normalize (FM; St; Zr; Zs);   

   /*Associate each member s of St with a reference point*/ 

   /*π(s): closest reference point*/ 

   /*d(s): distance between s and π(s)*/ 

   [π(s), d(s)] ← Associate (St, Zr);  

   /*Compute niche count of reference point rZj */ 

ρj ←  lFtSs /
((π(s) = j) ? 1 : 0);

   /*Choose K members one at a time from Fl to construct Pt+1*/ 

   Niching (K, ρj, π(s), d(s), Zr, Fl, Pt+1); 

 End If 

 End 

Figure 2. Pseudocode of NSGA-III main procedure. 
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limits by eliminating randomly some refactoring operations. It is 
important to note that in many-objective optimization, it is better to 
create children that are close to their parents in order have a more 
efficient search process [7]. For this reason, we control the cutting 
point of the one-point crossover operator by restricting its position to 
be either belonging to the first tier of the refactoring sequence or 
belonging to the last tier. For mutation, we use the bit-string mutation 
operator that picks probabilistically one or more refactoring 
operations from its or their associated sequence and replaces them by 
other ones from the initial list of possible refactorings. 

Solution evaluation. Each generated refactoring solution is executed 
on the system S. Once all required data is computed, the solution is 
evaluated based on the 15 metrics used as objective functions. Based 
on these values, the refactoring solution is assigned a non-domination 
rank (as in NSGA-II) and a position in the objective space allowing it 
to be assigned to a particular reference point based on distance 
calculation as previously described. 

Normalization of population members. Usually objective functions 

(metrics) are incommensurable (i.e., they have different scales). For 

this reason, we used the normalization procedure proposed by Deb et 

al. [7] to circumvent this problem. At each generation, the minimal 

and maximal values for each metric are recorded and then used by the 

normalization procedure. Normalization allows the population 

members and with the reference points to have the same range, which 

is a pre-requisite for diversity preservation. 

4. DESIGN OF THE EMPIRICAL STUDY

4.1 Research Questions 

RQ1: How does NSGA-III perform compared to other many-

objective (MOAE/D [30], IBEA [31]) and multi-objective (NSGA-II 

[8]) techniques? It is important to evaluate the performance of 

NSGA-III in terms of scalability when the number of considered 

objectives increases. In addition, it is interesting to determine if 

considering more metrics (objectives) improves the quality of the 

suggested refactoring solutions (the number of fixed code smells). 

RQ2: How does NSGA-III perform compared to mono-objective 

refactoring approaches [19][23]? It is important to determine if 

considering each conflicting metric as a separate objective to 

optimize performs better than a mono-objective approach that 

aggregates all metrics in one objective. The comparison between a 

many-objective EA with a mono-objective one is not straightforward. 

The first one returns a set of non-dominated solutions while the 

second one returns a single optimal solution. In order to resolve this 

problem, for each many-objective algorithm we choose the nearest 

solution to the ideal point [3] (i.e., the vector composed of the best 

objective values among the population members) as a candidate 

solution to be compared with the single solution returned by the 

mono-objective algorithm. For both RQ1 and RQ2, we performed a 

qualitative evaluation where 8 PhD students in Software Engineering, 

with at least 2 years programming experience in Java and familiar 

with the evaluated open source systems, evaluated 10 operations from 

the best suggested refactoring solutions for each system. The 

operations were classified as useful (make sense semantically) or not. 

RQ3: How does our many-objective formulation scale? There is a 

cost in allowing the developer to specify a large number of 

objectives. Can it be demonstrated that as the number of objectives 

increases, we can achieve a commensurate increase in the quality of 

the solutions generated? If not, then our approach is not justified. 

4.2 Experimental Setup 

4.2.1 Systems Studied 
Our study considers the extensive evolution of different open source 

Java systems analyzed in the literature [19][24][21][25]. The corpus 

used includes releases of Apache Ant, ArgoUML, Gantt, Azureus and 

Xerces-J. Table 1 reports the size in terms of classes of the analyzed 

systems. The table also reports the number of code smells identified 

manually in the different systems -- more than 700 in total. Indeed, in 

several works [19][24][21][25], the authors asked different groups of 

developers to analyze the libraries to tag instances of specific code 

smells to validate their detection techniques. For replication 

purposes, they provided a corpus describing instances of different 

code smells including blob, spaghetti code, and functional 

decomposition [12]. In our study, we verified the capacity of our 

approach to fix classes that correspond to instances of these code 

smells. We used the detection rules of code smells proposed in 

Kessentini et al. [19] to identify the number of fixed code smells after 

applying the best refactoring solutions. 

Table 1. Features of software systems analyzed. 

Systems Number of classes Number of code smells 

ArgoUML v0.26 1358 138 

ArgoUML v0.3 1409 129 

Xerces v2.7 991 82 

Ant-Apache v1.5 1024 103 

Ant-Apache v1.7.0 1839 124 

Gantt v1.10.2 245 41 

Azureus v2.3.0.6 1449 108 

4.2.2 Performance Indicators 
We used mainly three performance indicators to compare the 

different algorithms used in our experiments. These indicators are 

defined as follows: 

- Inverted Generational Distance (IGD): is used as the performance 

metric since it has been shown to reflect both the diversity and 

convergence of the obtained non-dominated solutions [7]. The IGD 

corresponds to the average Euclidean distance separating each 

reference solution from its closest non-dominated one. Note that for 

each system we use the set of Pareto optimal solutions generated by 

all algorithms over all runs as reference solutions. 

- Percentage of fixed code smells (NF) is the percentage of code 

smells fixed by the application of the best refactoring solution (i.e., 

number of fixed smells divided by the total number of code smells). 

The detection of code smells after applying a refactoring solution is 

performed using the detection rules of Kessentini et al. [19]. 

- Usefulness of suggested refactorings (UC) is the number of 

refactoring operations that make sense and useful divided by the total 

number of manually evaluated operations. 

- Computational time (CT) is used mainly to compare the efficiency 

of NSGA-III with other algorithms using the same number of 

objectives. 

4.2.3 Statistical Tests 
Our experimental study is performed based on 31 independent 
simulation runs for each problem instance and the obtained results 
are statistically analyzed by using the Wilcoxon rank sum test with a 
95% confidence level (α = 5%). The latter verifies the null hypothesis 
H0 that the obtained results of two algorithms are samples from 
continuous distributions with equal medians, against the alternative 
that they are not H1. The p-value of the Wilcoxon test corresponds to 
the probability of rejecting the null hypothesis H0 while it is true 
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(type I error). A p-value that is less than or equal to α (≤ 0.05) means 
that we accept H1 and we reject H0. However, a p-value that is strictly 
greater than α (> 0.05) means the opposite. In fact, for each problem 
instance, we compute the p-value obtained by comparing NSGA-II, 
IBEA, MOEA/D and mono-objective search results with NSGA-III 
ones.  

4.2.4 Parameter Settings 
Parameter setting influences significantly the performance of a search 

algorithm on a particular problem [1]. For this reason, for each many-

objective algorithm and for each system (cf. Table 1), we perform a 

set of experiments using several population sizes: 91, 210, 156, 275 

and 135 for respectively 3, 5, 8, 10 and 15 objectives. The maximum 

number of generations used is 400, 600, 750, 1000 and 1500 

respectively for 3, 5, 8, 10 and 15 objectives. Each algorithm is 

executed 31 times with each configuration and then comparison 

between the configurations is done based on IGD using the Wilcoxon 

test. In order to have significant results, for each couple (algorithm, 

system), we use the trial and error method [1] in order to obtain a 

good parameter configuration. Since we are comparing different 

search algorithms, we classify parameters into common parameters 

and specific parameters. Table 2 depicts the important common 

parameters. We used a set of 15 quality metrics, namely Weighted 

Methods per Class (WMC), Response for a Class (RFC), Lack of 

Cohesion of Methods (LCOM), Cyclomatic Complexity (CC), 

Number of Attributes (NA), Attribute Hiding Factor (AH), Method 

Hiding Factor (MH), Number of Lines of Code (NLC), Coupling 

Between Object Classes (CBO), Number of Association (NAS), 

Number of Classes (NC), Depth of Inheritance Tree (DIT), 

Polymorphism Factor (PF), Attribute Inheritance Factor (AIF) and 

Number of Children (NOC) [10]. We selected randomly at each run 

some metrics from this list when the number of objectives is lower 

than 15. We used 23 refactoring types in our experiments, namely 

Add Parameter, Rename Method Encapsulate Collection/ Downcast/ 

Field, Collapse Hierarchy, Hide Method, Extract Class /Interface/ 

Method/ Subclass/ Superclass, Inline Class/ Method, Move Field/ 

Method, Pull Up Field/ Method, Push Down Field/ Method and 

Remove Parameter/ Setting Method [31]. 

 Table 2. The setting of common parameters. 

Number of 

objectives 

Number of reference points 

(for NSGA-III and MOEA/D) 

Population 

size 

3 91 120 

5 210 230 

8 156 190 

10 275 280 

15 135 290 

4.3 Results 

Table 3 shows the median IGD and NF values of over 31 independent 

runs for all algorithms under comparison. All the results were 

statistically significant in the 31 independent simulations using the 

Wilcoxon rank sum test [1] with a 99% confidence level (α < 1%). 

For the 3-objective case, we see that NSGA-III and NSGA-II present 

similar results, and that NSGA-III provides slightly better results than 

IBEA and MOEA/D. For the 5-objective case, NSGA-III strictly 

outperforms NSGA-II and gives similar results to those of the two 

other multi-objective algorithms. For the 8-objective case, NSGA-III 

is strictly better than NSGA-II and significantly better than IBEA and 

MOEA/D. Additionally, IBEA seems to be slightly better than 

MOEA/D. It is worth noting that for problems’ instances with 8 

objectives or more, NSGA-II performance is dramatically degraded, 

which is simply denoted by the ~ symbol. For the 10- and 15-

objective cases, NSGA-III is strictly better than all other algorithms. 

Moreover, MOEA/D seems to significantly outperform IBEA. The 

performance of NSGA-III could be explained by the interaction 

between: (1) Pareto dominance-based selection and (2) reference 

point-based selection, which is the distinguishing feature of NSGA-

III compared to other existing many-objective algorithms. The 

percentage of fixed code smells using NSGA-III is better than all 

other algorithms in all systems in 100% of cases when more than 8 

objectives are considered. It is clear from Table 3 that the percentage 

of fixed code smells increases as we use more quality metrics to 

evaluate refactoring solutions. On average, all the four algorithms 

NSGA-III, IBEA, MOEA/D and NSGA-II perform similarly with 3 

objectives, however the percentage of fixed code smells is low in all 

systems. This is due to the fact that the use of only three quality 

metrics is not enough to evaluate the quality of the design after 

applying the best refactoring solution. The average percentage of 

fixed code smells in all systems using NSGA-III with 15 objectives 

on all systems is higher than 92%, which outperforms all the 

remaining algorithms. Thus, we can conclude that NSGA-III 

represents a scalable solution to find trade-offs between 15 objectives 

and that the use of additional objectives (metrics) improves the 

quality of refactoring solutions. 

Figure 3 illustrates the value path plots of all algorithms regarding the 

15-objective refactoring problem on ArgoUMLv0.26, the largest 

system used in our experiments. Similar observations were made in 

the remaining systems but are omitted due to space considerations. 

All quality metrics were normalized between 0 and 1 and all are to be 

minimized. We observe that NSGA-III presents the best convergence 

since its non-dominated solutions are the closest to the ideal point, 

Figure 3. Value path plots of non-dominated solutions obtained by NSGA-III, MOEA/D, IBEA and NSGA-II during the median run of 

the 15-objective refactoring problem on ArgoUML v0.26. 

1267

Author Preprint



i.e., the vector composed of 15 zeros. Also, MOEA/D seems to have

better convergence than IBEA. However, NSGA-II is unable to 

progress in terms of convergence as its non-dominated solutions are 

situated far from the ideal vector. We conclude that although NSGA-

II is the most famous multi-objective algorithm in SBSE, it is not 

adequate for problems involving more than 3 objectives. Based on 

the results we obtained for the refactoring problem, it appears that 

NSGA-III is a very good candidate solution for tackling many-

objective SBSE problems. 

We also compared the results of NSGA-III using 15 objectives and 

two mono-objective refactoring approaches on all seven open source 

systems as described in Figure 4. From the set of non-dominated 

solutions generated by NSGA-III, we selected the solution closest to 

the ideal point. NSGA-III performed better than both mono-objective 

algorithms in 100% of cases. In fact, since mono-objective algorithms 

aggregate all metrics in one objective there is a loss of information 

due to the conflicting nature of the used quality metrics. It is clear 

that mono-objective algorithms did not perform well in terms of 

fixing code smells whereas NSGA-III fixed on average more than 

92% of them, especially in the case of large systems such as Ant 

Apache and Argo UML. In general, large systems contain many 

different types of code smells and so a large number of metrics is 

required to evaluate the quality of a system after applying a 

refactoring solution. We asked 8 PhD students in Software 

Engineering to manually evaluate some suggested refactorings if they 

are useful and semantically make sense or not. As described in Figure 

5, the use of high number of metrics such as coupling and cohesion 

not only improve the structure by fixing code-smells but also helped 

our NSGA-III based algorithm to generate refactoring solutions that 

semantically make sense and. In all the considered systems, NSGA-

III outperforms existing work in terms of semantics preservation with 

at least 73% of precision on every system. 

4.1 Discussion 

Computational time (CT): 

When using optimization techniques, the most time consuming 

operation is the evaluation step. Thus, we studied the execution time 

of all many/multi-objective algorithms used in our experiments. 

Figure 5 shows the evolution of the running times of the different 

algorithms on the ArgoUMLv0.26 system, the largest system in our 

experiments. It is clear from this figure, that the multi-objective 

algorithm (NSGA-II) has similar running times for the 3- and 5-

Table 3. Median IGD and NF values on 31 runs (best values are in bold). ~ means a large value that is not interesting to 

show. The results were statistically significant on 31 independent runs using the Wilcoxon rank sum test with a 99% 

confidence level (α < 1%). 

Problem M MaxGen NSGA-III 

   NF  IGD 

IBEA 

NF  IGD 

MOEA/D  

NF           IGD 

NSGA-II  

NF  IGD 

ArgoUML 

v0.26 

3 400 69% 1.356 x 10-3 67% 1.358 x 10-3 69% 1.359 x 10-3 67% 1.356 x 10-3 

5 600 83% 3.918 x 10-3 79% 4.001 x 10-3 81% 4.007 x 10-3 54% 4.423 x 10-3 

8 750 86% 4.115 x 10-3 82% 4.327 x 10-3 84% 4.331 x 10-3 42% ~ 

10 1000 89% 1.727 x 10-2 84% 2.124 x 10-2 87% 2.001 x 10-2 37% ~ 

15 1500 96% 3.302 x 10-2 81% 3.826 x 10-2 84% 3.733 x 10-2 34% ~ 

Xerces v2.7 3 400 64% 9.751 x 10-4 64% 9.754 x 10-4 64% 9.753 x 10-4 62% 9.752 x 10-4 

5 600 78% 7.876 x 10-3 76% 7.910 x 10-3 74% 7.912 x 10-3 56% 8.006 x 10-3 

8 750 84% 8.001 x 10-3 81% 8.422 x 10-3 81% 8.428 x 10-3 48% ~ 

10 1000 92% 2.115 x 10-2 86% 2.410 x 10-2 86% 2.299 x 10-2 44% ~ 

15 1500 94% 4.666 x 10-2 86% 5.198 x 10-2 84% 4.935 x 10-2 39% ~ 

ArgoUML 

v0.3 

3 400 63% 2.667 x 10-3 63% 2.668 x 10-3 66% 2.668 x 10-3 63% 2.667 x 10-3 

5 600 79% 4.283 x 10-3 76% 4.291 x 10-3 78% 4.294 x 10-3 51% 4.524 x 10-3 

8 750 91% 5.545 x 10-3 84% 5.701 x 10-3 86% 5.716 x 10-3 47% ~ 

10 1000 94% 3.339 x 10-2 87% 3.601 x 10-2 89% 3.477 x 10-2 39% ~ 

15 1500 98% 6.001 x 10-2 89% 6.554 x 10-2 87% 6.399 x 10-2 34% ~ 

Ant-Apache 

v1.5 

3 400 68% 3.854 x 10-4 66% 3.857x 10-4 66% 3.856x 10-4 68% 3.856x 10-4 

5 600 76% 4.678 x 10-4 76% 4.702 x 10-4 78% 4.709 x 10-4 52% 5.035 x 10-4 

8 750 88% 6.111 x 10-4 81% 6.308 x 10-4 83% 6.313 x 10-4 46% ~ 

10 1000 93% 2.861 x 10-3 84% 3.008 x 10-3 86% 2.999 x 10-3 34% ~ 

15 1500 97% 5.928 x 10-3 82% 6.478 x 10-3 81% 6.399 x 10-3 31% ~ 

Ant-Apache 

v1.7.0 

3 400 61% 4.326 x 10-3 61% 4.328 x 10-3 63% 4.329 x 10-3 62% 4.327 x 10-3 

5 600 73% 5.612 x 10-3 69% 5.692 x 10-3 71% 5.694 x 10-3 53% 6.001 x 10-3 

8 750 86% 6.269 x 10-3 84% 6.516 x 10-3 82% 6.521 x 10-3 48% ~ 

10 1000 89% 4.007 x 10-2 87% 4.301 x 10-2 84% 4.147 x 10-2 37% ~ 

15 1500 92% 7.006 x 10-2 84% 7.840 x 10-2 81% 7.688 x 10-2 31% ~ 

Gantt v1.10.2 3 400 63% 5.111 x 10-3 64% 5.113 x 10-3 63% 5.114 x 10-3 66% 5.111 x 10-3 

5 600 69% 6.601 x 10-3 67% 6.702 x 10-3 69% 6.701 x 10-3 54% 6.956 x 10-3 

8 750 88% 7.899 x 10-3 83% 8.101 x 10-3 81% 8.116 x 10-3 44% ~ 

10 1000 93% 3.333 x 10-2 84% 3.637 x 10-2 86% 3.536 x 10-2 37% ~ 

15 1500 97% 5.807 x 10-2 82% 6.202 x 10-2 83% 6.125 x 10-2 28% ~ 

Azureus 

v2.3.0.6 

3 400 61% 6.429 x 10-4 64% 6.432 x 10-4 61% 6.431 x 10-4 64% 6.431 x 10-4 

5 600 78% 6.708 x 10-4 72% 6.782 x 10-4 75% 6.788 x 10-4 47% 6.991 x 10-4 

8 750 84% 6.976 x 10-4 80% 7.205 x 10-4 82% 7.212 x 10-4 34% ~ 

10 1000 91% 2.745 x 10-3 84% 2.976 x 10-3 87% 2.877 x 10-3 26% ~ 

15 1500 94% 4.981 x 10-3 81% 5.508 x 10-3 78% 5.394 x 10-3 26% ~ 
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objective cases. However, for higher numbers of objectives NSGA-III 

is faster than IBEA. This observation could be explained by the 

computational effort required to compute the contribution of each 

solution in terms of hypervolume. In comparison to MOEA/D, 

MOEA/D is slightly faster than NSGA-III since it does not make use 

of non-dominated sorting. 

Figure 4. Median NF values on 31 independent runs using 7 

systems comparing NSGA-III and two mono-objective approaches 

[19][23]. 

Figure 5. Median UR (semantic coherence) values on 31 

independent runs using 7 systems comparing NSGA-III and two 

mono-objective approaches [19][23]. 

Quality improvements vs. number of objectives: 

One of the main motivations of our work is to propose a scalable 

search-based software engineering approach that can address 

software engineering problems with a large number of objectives to 

be optimized. Thus, we evaluated the impact of taking into 

consideration a higher number of objectives (metrics) on the quality 

of the refactoring solutions. In fact, the symptoms of code smells can 

be formalized in terms of quality metrics, thus if we consider more 

metrics in evaluating a refactoring solution there is a better chance 

that more code smells are fixed. Figure 5 confirms this. The 

percentage of fixed code smells increases from 63% to 98% as the 

number of objectives/metrics increases from 3 to 15 objectives. This 

result allows us to affirm RQ3. 

Figure 6. Median CT values on 31 independent runs using 7 

systems comparing NSGA-III and two mono-objective 

approaches. 

Figure 7. Median NF values on 31 independent runs using 

ArgoUML v 0.3 with 3, 5, 8, 10 and 15 objectives. 

5. RELATED WORK
Search-based refactoring represents fully automated refactoring 

driven by metaheuristic search and guided by software quality metrics 

and used subsequently to address the problem of automating design 

improvement [23]. Seng et al. [27] propose a search-based technique 

that uses a genetic algorithm over refactoring sequences. The 

employed metrics are mainly related to various class level properties 

such as coupling, cohesion, complexity and stability. The approach 

was limited only to the use of one refactoring operation type, namely 

'move method'. In contrast to O’Keeffe et al. [23], their fitness 

function is based on well-known measures of coupling between 

program components. Both these approaches use weighted-sum to 

combine metrics into a fitness function, which is of practical value 

but is a questionable operation on ordinal metric values. Kessentini et 

al. [19] also propose a single-objective combinatorial optimization 

using a genetic algorithm to find the best sequence of refactoring 

operations that improve the quality of the code by minimizing as 

much as possible the number of code smells detected using a set of 

quality metrics. Kilic et al. explore the use of a variety of population-

based approaches to search-based parallel refactoring, finding that 

local beam search could find the best solutions. Harman and Tratt 

were the first to introduce the concept of Pareto optimality to search-

based refactoring [14]. They use it to combine two metrics into a 

fitness function, namely CBO (coupling between objects) and 

SDMPC (standard deviation of methods per class), and demonstrate 
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that it has several advantages over the weighted-sum approach. More 

recent work on multi-objective search-based refactoring is the work 

by Ouni et al. [24] who propose a multi-objective optimization 

approach to find the best sequence of refactorings using NSGA-II. 

The proposed approach is based on two objective functions, quality 

(proportion of corrected code smells) and code modification effort, to 

recommend a sequence of refactorings that provide the best trade-off 

between quality and effort. 

6. CONCLUSIONS AND FUTURE WORK
This paper represents the first real-world application of NSGA-III

and the first scalable work that supports the use of 15 objectives to 
address a software engineering problem. In our approach, refactoring 
solutions are evaluated using a set of 15 software quality metrics. We 
evaluated our approach on seven large open source systems 
[28][29][30][31][32]. The experimental results indicate that NSGA-

III outperforms other many-objective algorithms (IBEA [31] and 

MOEA/D [30]), NSGA-II and mono-objective evolutionary 

algorithms [19][23]. As part of the future work, we plan to work on 

adapting NSGA-III to additional software engineering problems and 
we will perform more comparative studies on larger open source 
systems. 
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