
Vol.:(0123456789)

Automated Software Engineering (2022) 29:21
https://doi.org/10.1007/s10515-021-00319-5

1 3

Improving the prediction of continuous integration build
failures using deep learning

Islem Saidani1 · Ali Ouni1 · Mohamed Wiem Mkaouer2

Received: 16 June 2020 / Accepted: 17 December 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Continuous Integration (CI) aims at supporting developers in integrating code
changes constantly and quickly through an automated build process. However, the
build process is typically time and resource-consuming as running failed builds can
take hours until discovering the breakage; which may cause disruptions in the devel-
opment process and delays in the product release dates. Hence, preemptively detect-
ing when a software state is most likely to trigger a failure during the build is of
crucial importance for developers. Accurate build failures prediction techniques can
cut the expenses of CI build cost by early predicting its potential failures. However,
developing accurate prediction models is a challenging task as it requires learning
long- and short-term dependencies in the historical CI build data as well as exten-
sive feature engineering to derive informative features to learn from. In this paper,
we introduce DL-CIBuild a novel approach that uses Long Short-Term Memory
(LSTM)-based Recurrent Neural Networks (RNN) to construct prediction models
for CI build outcome prediction. The problem is comprised of a single series of CI
build outcomes and a model is required to learn from the series of past observations
to predict the next CI build outcome in the sequence. In addition, we tailor Genetic
Algorithm (GA) to tune the hyper-parameters for our LSTM model. We evaluate our
approach and investigate the performance of both cross-project and online prediction
scenarios on a benchmark of 91,330 CI builds from 10 large and long-lived software
projects that use the Travis CI build system. The statistical analysis of the obtained
results shows that the LSTM-based model outperforms traditional Machine Learning
(ML) models with both online and cross-project validations. DL-CIBuild has shown
also a less sensitivity to the training set size and an effective robustness to the con-
cept drift. Additionally, by considering several Hyper-Parameter Optimization (HPO)
methods as baseline for GA, we demonstrate that the latter performs the best

Keywords Continuous integration · Build prediction · Travis CI · Genetic
algorithm · Long short term memory · Machine learning · Hyper-parameters
optimization · Concept drift

Extended author information available on the last page of the article

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 2 of 61

1 Introduction

Continuous integration (CI) (Duvall et al. 2007) is a set of software development
practices that are widely adopted in commercial and open source environments
(Vasilescu et al. 2015). A typical CI system, such as Travis CI https:// travis- ci. org/,
a widely-used cloud-based platform for providing CI services to software projects,
advocates to continuously integrate code changes, introduced by different devel-
opers, into a shared repository branch. The key to making this possible, according
to Fowler (Fowler 2006), is automating the process of building and testing, which
reduces the cost and risk of delivering defective changes. From the academic side,
the study of CI adoption has become an active research topic and it has already been
shown that CI improves developers’ productivity (Hilton et al. 2016; Saidani et al.
2020, 2022), helps to maintain code quality (Vasilescu et al. 2015; Saidani et al.
2021a, b) and allows for a higher release frequency (Zhao et al. 2017).

However, despite its valuable benefits, CI brings its own challenges. Hilton et al.
(2017) revealed that build failures represent major barriers that developers face
when using CI . A build failure, i.e., failing to compile the software into machine
executable code, represents a blocker that hinders developers from proceedings fur-
ther with development, as it requires immediate action to resolve it. Indeed, Gha-
leb et al. (2019a) have shown that long build duration is not always associated with
passed builds as expected and Hilton et al. (2016) found that passed builds can run
faster than failed builds. For example, in the TravisTorrent dataset (Beller et al.
2017), failed Travis CI builds run 12 hours while passed builds can take 8 hours on
average. In addition to the long build duration issue, the resolution may take hours
or even days to complete, which severely affects both, the speed of software devel-
opment and the productivity of developers (Vasilescu et al. 2015).

Such challenges motivated researchers and practitioners to develop techniques for
preemptively detecting when a software state is most likely to trigger a failure when
built. In recent years, numerous prediction methods have been developed to leverage
the history of previous build success and failures in order to train Machine Learn-
ing (ML) models. Such models learn from the CI builds history and use the domain
knowledge to extract features and predict the outcome of a given input build. For
instance, Hassan and Wang (2017) used Random Forest (RF), for the binary clas-
sification of build outcome , while Ni and Li (2017) adapted AdaBoost (ADA) to
improve the accuracy of CI build prediction. Although these techniques have advo-
cated that predicting CI build failures is possible in practice and beneficial, the
applicability of these approaches is limited due to three main challenges:

– Feature engineering: Traditional ML techniques rely on a set of features manu-
ally designed for characterizing a given problem, e.g., CI builds. Generally, the
feature engineering task is tedious, time-consuming, error-prone and requires
substantial expertise in the field (Li et al. 2018; Shan et al. 2016; Bouktif et al.
2018; Sundsøy et al. 2016). Additionally, the accuracy of prediction models
depends highly on the relevance of the selected features. Broadly speaking, the

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 3 of 61 21

build failure prediction problem is not yet resolved as the reasons behind the
build failure is still ambiguous.

– Temporal information: Previous work on CI build prediction is focused on
TravisTorrent-based measures (e.g., number of all built commits, number of
distinct authors, etc.) to predict new CI build results in the future, without tak-
ing temporal information into account, i.e., chronological order of CI build out-
comes. As a result, these works achieved a limited prediction accuracy. The CI
builds outcome data is by nature a time series data (Atchison et al. 2017) where
the temporal dimension is of crucial importance. However, such time series data
can be highly erratic and complex with much noise and high dimensionality
especially with unexpected or repetitive build failures over time (Längkvist et al.
2014).

– Data imbalance: Another innate issue to classic ML-based approaches is related
to the imbalanced distribution of class examples as failed builds are typically
likely to occur less than passed ones (Xie and Li 2018). This challenges their
applicability due to the performance bias that can occur when an imbalanced dis-
tribution of class examples is used (Bhowan et al. 2011, 2010, 2013). Further-
more, this imbalanced nature of the training data was rarely discussed in existing
works. However, in CI context, a good accuracy on the failed builds prediction is
more important than the passed builds accuracy.

These challenges make Deep Learning (DL) time series models suitable for this kind
of problems (Längkvist et al. 2014). Indeed, DL methods make no assumption about
the underlying pattern in the data and are also more robust to noise (which is com-
mon in time series data), making them an ideal choice for time series analysis of CI
builds. Additionally, DL models are known to decrease the reliance on engineered
features to address classification problems (Javier Ordóñez and Roggen 2016).

In this paper, we introduce DL-CIBuild, a novel approach to predict CI build fail-
ure. In particular, Long Short-Term Memory (LSTM) network is trained on sequen-
tial data in which each series observation is the history of build results during a
specific time period. The time series prediction produced by LSTM models are then
used to estimate the outcome of future builds. Moreover, as naive selection of hyper-
parameter values may compromise the effectiveness of any DL adaptation, we opt
for an automated hyper-parameter optimization (Tantithamthavorn et al. 2018a;
Jebnoun et al. 2020). In particular, we rely on Genetic algorithm (GA) to find the
optimal set of parameter values to build a model with optimal prediction accuracy.
Furthermore, to handle the data imbalance, we apply Threshold Moving (Zhou and
Liu 2005) to move the classification threshold such that more failed builds can be
classified correctly (Zheng 2010).

To evaluate our approach, we conducted an empirical study on a benchmark com-
posed of 91,330 builds records from 10 open source projects that use the Travis CI
system, one of the most popular CI systems (Hilton et al. 2017). We compare our
predictive performance to five widely-used ML techniques namely Random Forest
(RF), Decision Tree (DT), AdaBoost (ADA), Logistic Regression (LR) and Support
Vector Classification (SVC) for which we applied resampling. The statistical results

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 4 of 61

reveal that our approach advances the state-of-the art by outperforming existing pre-
diction models.

In summary, the contributions of this work are the following:

– We introduce a new formulation of the CI build failure prediction as a time series
problem using LSTM-RNN, and implement it with a tool called DL-CIBuild. To
the best of our knowledge, this is the first attempt to use deep learning LSTM-
based approach to learn CI build failures. The built model can be trained effi-
ciently using CI build outcomes, which requires no feature engineering. More-
over, we use GA to optimize the hyper-parameters of our models for optimal
performance.

– We conduct an empirical study to evaluate our LSTM-RNN based technique
compared to different existing approaches based on a benchmark of 10 large
open source projects with a total number of 91,330 builds. First, we validated the
efficiency of GA for Hyper-Parameters Optimization (HPO) against four HPO
methods such as Particle Swarm Optimization (PSO). Additionally, the obtained
results of the predictive performance comparison reveal that DL-CIBuild is more
efficient than existing ML techniques in terms of AUC, F1-score and accuracy
which indicates that our approach is able to strike a better balance between both
failed and passed builds accuracies. These results are further enhanced under
cross-project validation by achieving a median of 72%, 57% and 78% of AUC,
F1-score and accuracy, respectively. The obtained results indicate that DL-
CIBuild is a promising solution to deal with the lack of data in software projects.
Moreover, we conducted a sensitivity analysis suggesting that our approach has
less sensitivity than ML techniques with regards to the dataset size. Last but not
least, we showed that DL-CIBuild is robust to concept drift (Widmer and Kubat
1996).

– We provide our comprehensive dataset package available for future replications
and extensions https:// github. com/ stilab- ets/ DL- CIBui ld. Our replication pack-
age contains the CI build dataset, the source code of DL-CIBuild, all the scripts
used to run and reproduce the experiments with the necessary documentation.

The remainder of this paper is organized as follows. Section 2 provides the moti-
vation for time-series prediction then we present an overview of the CI build pro-
cess as well as LSTM-based modeling. We present our approach in Section 3. Sec-
tion 4 shows the experimental setup of our empirical study while Section 5 presents
the obtained results. Section 6 discusses the results implications on CI developers,
researchers and tool builders. Section 7 lists the related work. Section 8 reviews the
threats to the validity of our results. Finally, Section 9 concludes the paper and out-
lines avenues for future work.

2 Motivation and background

In this section, we provide a motivating example. Then, we present a brief back-
grounds on CI build process, LSTM-RNN as well as genetic algorithms.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 5 of 61 21

2.1 Motivating example

Figure 1 depicts an example of CI build outcome fluctuations over time for Jruby
GitHub project https:// github. com/ jruby/ jruby that uses the Travis CI system. As
shown in the figure, we can observe that there exist data patterns and an explicit
dependency on the time variable that may have a strong association with build out-
come. In practice, it is common that after a CI build failure, developers proceed
to take the right actions to fix the cause of the build failure which may lead to a
sequence of build failures followed by a succeeded build, as can be seen in Figure 1.
Conversely, after a sequence of successful builds, build failures often happen in an
unexpected manner over time. Moreover, previously experienced bugs and failures
can be the root cause of new failures during the CI build, while other unforeseen
failures may happen in an independent manner resulting into temporal dynamic
behavior and complex non-linear dependencies between failures. Thus, individual
observations, i.e., build results, cannot be predicted independently on each other.
This makes the CI build failures a time-series data involving a sequence of observa-
tions over regularly spaced intervals. Indeed, time series data consists typically of
sampled data points taken from a continuous, real-valued process over time, such as
the CI build process.

This motivates us to formulate the CI build failure prediction as a time series
problem of using LSTM deep learning to learn from past observations in order to
identify temporal patterns that best describe the inherent structure and temporal pro-
cess embodied in the series and thus increase the predictive performance.

2.2 CI build process

CI aims to build healthier software systems by developing and testing in smaller
increments without compromising software quality. The basic notion of CI, as
described by Folwer (Fowler 2006) is to support developers’ work by automating
the code compilation, dependencies collection and tests running. This process is an

Fig. 1 A snapshot of build outcome fluctuations in JRuby between 2016-08-01 and 2016-08-31.”1”
means a failed build, and ”0” for a passed build

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 6 of 61

enduring check on the quality of contributed code that mitigates the risk of “break-
ing the build” as regressions can be detected and fixed immediately.

CI has a well-defined life-cycle when generating builds. The main phases of the
CI build life-cycle are depicted in Figure 2. First of all, a contributor forks, i.e.,
clones, the project repository, makes some changes, as creating a new feature or by
fixing some bugs, on the code base (1). When the work is done, the contributor sub-
mits the changes to the original repository (2). At this point, the CI service carries
out a series of tasks to build and test these changes (3). Then, it provides immediate
feedback on the outcome of the test to the core team (4), i.e., developers who dis-
pose of write access to a project’s code repository (Vasilescu et al. 2015). When one
or more of those tasks fail, the build is considered failed, otherwise it will be passed
and core team members proceed to do a code review and, if necessary, the submit-
ter would be requested for modifications. After a cycle of code reviews, automatic
building and testing, if everyone is satisfied, the submitted changes will be merged
to the mainline branch.

2.3 Long short‑term memory network

Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber 1997a)
are a special type of Recurrent Neural Networks (RNNs) that have recently emerged
as effective models capable of learning long-term dependencies. They were intro-
duced by Hochreiter & Schmidhuber (Hochreiter and Schmidhuber 1997b) and
widely applied in language modeling (Sundermeyer et al. 2012), machine translation
(Cui et al. 2015), speech recognition (Graves et al. 2013), classification (Athiwarat-
kun and Stokes 2017; Wang et al. 2016; Graves and Schmidhuber 2005) and many
other real-world problems (Bouktif et al. 2018, 2020).

LSTM networks were designed to overcome the difficulty of training RNNs
due to the vanishing gradient problem (Pascanu et al. 2013). In a nutshell, it was
observed that the gradients in RNNs tend to get smaller with back-propagation
which forces the network to interrupt the learning process. In addition to hidden
state and memory vectors, LSTMs introduce three gating mechanisms (Karpathy
et al. 2015) namely (i) forget gate for deletion of less important information from
memory, (ii) input gate to add new information to cell state and (iii) output gate

Fig. 2 CI build process

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 7 of 61 21

which decides what to output from memory. These gates allow efficient manage-
ment of LSTM internal cell memory.

Figure 3 shows the information flow and the set of gates within LSTM cells
http:// colah. github. io/ posts/ 2015- 08- Under stand ing- LSTMs/. In this diagram, the
pink circles represent point-wise operations (e.g. ”+” operation for addition), while
the yellow boxes stand for neural network layers. Lines merging denote concatena-
tion, while a line forking denotes its content being copied to different locations.

The first step in LSTM is to decide what information to be erased from the cell
state. The key to this is the top line of the diagram which represents the memory
pipe. The input to this pipe is the old memory (a vector noted Ct−1) that passes
through the forget gate layer. The latter is controlled by (i) a sigmoid layer neural
network describing how much of each ht−1 (the output of the previous LSTM block)
and Xt (the input for the current LSTM block) should be passed and (ii) a point-wise
multiplication operation that is activated when we want to ignore the old memory.
The next step is to decide what new information to be stored in the cell state using
the input gate layer composed of (i) a sigmoid layer that decides which values of ht−1
and Xt to be updated and (ii) a tanh neural layer that creates a vector of new candi-
date values to be added to the cell state. These two elements will be then combined
(with + operation) to change the old cell state Ct−1 to the new cell state Ct . Finally,
we need to set the output ht . We filter Ct through tanh operation and multiply it by
the output of the sigmoid gate, so that we only output the parts we decided to.

There exist several variants of the LSTM architecture for RNNs like GRU (Dey
and Salemt 2017) where the structure is similar to a LSTM cell but with only two
gates namely update (combination of forget and input gates) and reset gates.

2.4 Genetic algorithm

GA is a widely used computational search technique, that has proven good perfor-
mance in solving many software engineering problems (Harman et al. 2012, 2010;
Mkaouer et al. 2015; Ouni et al. 2016). GA is inspired by Darwinian evolution, and
aims at finding -near- optimal solutions by simulating a natural evolutionary process
(Goldberg 1989). Algorithm provides a high level pseudo-code of GA. It starts by

Fig. 3 An overview of information flow in LSTM

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 8 of 61

randomly creating an initial population P0 of individuals encoded using a specific
representation. Then, a child population Q is generated from the population of par-
ents P0 using genetic operators (crossover and mutation). The whole population Q is
sorted according to their performance computed by a fitness function and the worst
solutions will be excluded based on the elitism mechanism, i.e., only the fittest solu-
tion will survive and will be transmitted to the next population. This process will be
repeated until reaching the last iteration according to a stop criteria.

Algorithm 1 High level pseudo code of the Genetic Algorithm (GA)
1: Create an initial population P0;
2: EvalPopulation(P0); /* Evaluates the population P0 */
3: t = 0;
4: while stopping criteria not reached do
5: Q ← create-new-pop(Pt); /* Create new solutions from Pt */
6: /* EvalPopulation(Pt); /* Evaluate the new solutions */
7: Pt+1 ← ApplyGeneticOperators(Pt ∪Q); /* Next generation population*/
8: t = t+1;
9: end while

3 Our proposed approach

In this section, we present our approach DL-CIBuild for CI build failure predic-
tion. We first explain how we built our LSTM-RNN model to learn CI build fail-
ures, then we describe our genetic algorithm-based method to optimize the model
hyper-parameters.

3.1 Methodology overview

The main goal of our approach is to help developers cutting off such expenses by
effectively predicting the CI build outcome before they happen. Indeed, CI build
failures are generally time and resource-consuming and can cause disruptions in the
development process and delays in the software product release dates (Ghaleb et al.
2019a). In particular, we handle the problem of CI build failures as a time series pre-
diction problem by estimating the outcome of a given build based on the history of
observed build processes. We use LSTM-based Recurrent Neural Network (RNN)
to model the CI build process sequential data. Figure 4 provides an overview of our
proposed approach.

Our framework starts by adapting Genetic Algorithm (GA) to determine the
appropriate hyper-parameters for the LSTM model. These parameters are then used
to build the architecture of the final LSTM model. During this Hyper-Parameters
Optimization (HPO), the input data,i.e., a sequence of CI build results, is prepared
using reshaping; then the candidate models are trained according to their generated
configurations. The training data is extracted from the history of CI builds that are
typically recorded using the CI build system used by a software project, e.g., Travis
CI. At the end of HPO, the optimal model, i.e. providing the best score, is selected.
In the prediction phase, our optimal model is used to predict if an unknown build

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 9 of 61 21

would fail or succeed. The hyper-parameters to be tuned, the data preprocessing and
the adaptation of GA are described in the following sub-sections.

3.2 LSTM model construction and hyper‑parameters tuning

We first need to design and configure our LSTM-RNN model by choosing the archi-
tecture, setting up the initial hyper-parameters, and selecting the mathematical com-
ponents such as activation functions, loss functions, and gradient-based optimizers
(Jebnoun et al. 2020; Bouktif et al. 2020). Obtaining good results using LSTM net-
works is not trivial, as it requires consideration of the tuning of many parameters.
Unfortunately, applying LSTM models may not produce acceptable or optimal
results, not only because of the nature of the analyzed data but also due to the naive
selection of its hyper-parameter values. Table 1 lists the parameters to be optimized
for the LSTM model.

To construct the model, the first LSTM parameters to be tuned are the numbers of
hidden layers and neurons per layer. As a neural network, LSTM depends highly on

Fig. 4 DL-CIBuild overview

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 10 of 61

Ta
bl

e
1

 L
ist

 o
f p

ar
am

et
er

s f
or

 th
e

LS
TM

 m
od

el

C
at

eg
or

y
N

◦

Pa
ra

m
et

er
D

es
cr

ip
tio

n

H
yp

er
-p

ar
am

et
er

s
1

N
um

be
r o

f u
ni

ts
 N

um
be

r o
f n

eu
ro

ns
 in

 e
ac

h
LS

TM
 la

ye
r.

2
N

um
be

r o
f l

ay
er

s
 N

um
be

r o
f h

id
de

n
la

ye
rs

 to
 b

e
us

ed
 to

 tr
ai

n
th

e
m

od
el

.
3

B
at

ch
 S

iz
e

 N
um

be
r o

f s
am

pl
es

 to
 b

e
pr

op
ag

at
ed

 th
ro

ug
h

th
e

ne
tw

or
k

be
fo

re
 u

pd
at

in
g

th
e

in
te

rn
al

 p
ar

am
et

er
s.

4
N

um
be

r o
f e

po
ch

s
 N

um
be

r o
f t

im
es

 th
at

 th
e

le
ar

ni
ng

 a
lg

or
ith

m
 w

ill
 w

or
k

th
ro

ug
h

th
e

en
tir

e
tra

in
in

g
se

t.
5

O
pt

im
iz

er
Ty

pe
 o

f o
pt

im
iz

er
 u

se
d

to
 u

pd
at

e
w

ei
gh

ts
 d

ur
in

g
tra

in
in

g.
6

D
ro

po
ut

 p
ro

ba
bi

lit
y

Se
ts

 th
e

ra
te

 o
f i

np
ut

 u
ni

ts
 to

 d
ro

p
in

 o
rd

er
 to

 av
oi

d
ov

er
-fi

tti
ng

.
In

pu
t p

ar
am

et
er

s
7

Ti
m

e
St

ep
 N

um
be

r o
f p

re
vi

ou
s o

bs
er

va
tio

ns
 th

at
 a

re
 u

se
d

to
 p

re
di

ct
 th

e
ne

xt
 re

su
lt

ou
tc

om
e.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 11 of 61 21

the settings of these parameters. There is no final definite rule of how many nodes
(i.e., hidden neurons) or how many layers one should be choosing, and generally,
practitioners perform a trial and error approach to get the best results. The same
uncertainty about the amount of these parameters also exists for the number of
epochs and the batchsize as they affect how well/poorly the model can perform and
also can help to prevent over-fitting. Another important parameter to be optimized is
the optimizer. Among the optimizers, there exists stochastic root mean square propa-
gation (RMSprop) and adaptive moment estimation (adam). Last but not least we
have to decide, the probability of dropout which stands for a regularization method
where input and connections to LSTM neurons are partially excluded from activa-
tion and weight updates in order to avoid over-fitting. Not that for each layer, we set
the same dropout probability.

As LSTM input data is essentially a set of past observation sequences, it
is important to identify the most relevant time steps to feed the model. This can
allow the LSTM model to capture the valuable information contained with different
timescales.

Finding the suitable configuration is, on the one hand, a combinatorial problem
where the selection is made from a very large space of choices; on the other hand, it
is a learning problem where the hyper-parameters should reflect the CI build domain
knowledge, such as the size of the software project, the number of developers, the
adopted testing methods, the used CI system, influential time lags, seasonality,
and other socio-technical factors that could differ from one project to another. We
describe in the next subsection how GA is used to find the suitable hyper-parameters
for our LSTM model.

3.3 GA adaptation for HPO of LSTM

In this section, we describe how we adapted Genetic Algorithm (GA) for LSTM
model configuration problem, then we provide the hyper-parameters to be optimized
for our LSTM model. In particular, as described in Section 2.4, for any attempt to
use GA in a real-world problem, a number of key elements need to be defined such
as the solution representation, genetic operators and the fitness function.

3.3.1 Individual representation

A candidate solution, i.e.,a set of parameters configurations, is represented as an
array where each cell corresponds to a randomly generated value for a specific
parameter as depicted in Figure 5. The initial population is composed of N solutions
created randomly.

Fig. 5 An example of solution encoding for the GA

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 12 of 61

3.3.2 Genetic operators

To evolve a population of solutions, genetic operators such as crossover and muta-
tion are used. We formulate our genetic operators as follows.

– Crossover: is used to combine the genetic information of two parents. In our adap-
tation, we use the standard single-point crossover operator. A sub-list is extracted
from each parent. Then, the crossover operator exchanges the two sub-lists
between parents. Figure 6 shown an example of the crossover operator applied to
Parents 1 and 2 to produce two offspring solutions Child 1 and Child 2.

– Mutation: The mutation operator aims at adding slight modifications to a can-
didate solution. In our adaptation, the mutation operator first randomly selects
one or more cells from a given candidate solution. Then, the selected cell(s) will
be replaced by new randomly generated values. Figure 7 shows an example of
mutation operators where three random cells from a parent solution are selection,
i.e., the number of layers, the number of epochs and the optimizer, and randomly
replaced by other values.

3.3.3 Solution evaluation (fitness function):

Each candidate solution should be evaluated to assess how good it is in solving the
problem at hand. An appropriate fitness function should be defined to evaluate the
fitness of a candidate solution, i.e., the selected hyper-parameters to build out model.
In this paper, we aim to optimize the architecture of our LSTM-RNN model by min-
imizing the validation loss (Li et al. 2020).

Fig. 6 An example of crossover operator for the GA

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 13 of 61 21

3.4 Data preprocessing

To train the model, we must first transform the data to a specific encoding that
could be modeled with LSTM. The input data for LSTM, which consists of set of CI
builds results, needs to be reshaped into a 3D array with the following dimensions
[samples, time steps, features], where the samples are the input data, time steps are
the number of previous observations (which is tuned by GA) used to predict the next
build result and features is the number of features considered to feed the network
which corresponds to 1 as we use a single LSTM model. In Figure 8, we provide an
example of input data (i.e. a sequence of builds outcomes) and how it reshaped with
a time step = 5.

3.5 CI build prediction based on threshold moving strategy

In our case, LSTM works as a binary classifier where the output is the probability of
class membership (i.e., the probability of new build to fail) and this must be inter-
preted before it can be mapped to a class label (e.g., failed or passed). Hence, it is
crucial to set the decision threshold above which all values are mapped to one class
and all other values are mapped to another class. Threshold moving has brought the
attention from the DL research community (Collell et al. 2018; Buda et al. 2018;
Krawczyk and Woźniak 2015; Zhou and Liu 2005; Zheng 2010) as a solution to
handle the imbalanced distribution of class examples in time series data, which is

Fig. 7 An example of mutation operator for the GA

Fig. 8 An example of data preprocessing

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 14 of 61

indeed the case of build failure prediction (Xie and Li 2018). This solution refers
to tuning the threshold used to map probabilities to class labels as the default value
(=0.5) can lead to a poor predictive performance when the data is imbalanced Foster
Provost (2000).

4 Empirical study setup

In this section, we describe the design of empirical study that we performed to
evaluate our approach, DL-CIBuild, based on the TravisTorrent dataset (Beller et al.
2017).

Figure 9 provides an overview of our experimental design. First, we start by
selecting the suitable optimization technique for our DL approach (RQ1). Then to
validate the predictive performance, we compare our results with five widely-used
Machine Learning (ML) techniques including Decision Tree (DT) (Quinlan 2014),
Random Forest (RF) (Breiman 2001), AdaBoost (ADA) (Schapire 2013; Ni and Li
2017), Support Vector Classification (SVC) (Hsu et al. 2003) and Logistic Regres-
sion (LR) CM Bishop (2006). We first consider online validation (Xia and Li 2017)
(RQ2). Then, we investigate the generalizability of identifying CI build failures by
applying cross-project validation using the Bellwether strategy (Xia et al. 2017a)
(RQ3). Lastly, we evaluate the sensitivity of our DL approach to the training size
while comparing its performance against the other ML techniques (RQ4). In the fol-
lowing, we describe our validation in detail.

4.1 Replication package

We provide our replication package available at https:// github. com/ stilab- ets/ DL-
CIBui ld. Specifically, we provide a comprehensive dataset, the source code of DL-
CIBuild and the benchmark models (i.e. RF, ADA, DT, LR and SVC). We also pro-
vide detailed instructions on how to run the code and replicate all the experiments
we reported in this paper for future replications and extensions.

4.2 Data

Our experiments are based on TravisTorrent dataset, from which we selected top-10
projects according to the number of build records. An overview about the studied
projects is reported in in Table 2. It is worth noting that the dataset is highly imbal-
anced as reported in Table 2 with an average failure rate of 0.3.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 15 of 61 21

Fig. 9 Experimental design

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 16 of 61

Rails1 is a web application framework that provides several features needed to
create database-backed web applications according to the Model-View-Controller
(MVC) pattern. Ruby2 is an interpreted object-oriented programming language
often used for web development. JRuby https:// github. com/ jruby/ jruby is an imple-
mentation of Ruby on the JVM. Metasploit3 is a penetration testing platform
that enables to write, test, and execute code with a suite of tools. Jackrabbit
Oak4 is a scalable, high-performance hierarchical content repository designed for
use as the foundation of modern web sites and content applications. OpenPro-
ject5 is one of the leading open source web-based project management systems.
Cloudify6 is a cloud-enablement platform that on-boards applications to public
and private clouds without architectural or code changes. Graylog2-server7 is a log
management system that centrally captures, stores, and enables real-time search and
log analysis. Vagrant8 is a tool for building and distributing development environ-
ments with a declarative configuration file. SonarQube9 is a popular platform for
continuous inspection of code quality. Finally, the Open Build Service10 is a
generic system to build and distribute binary packages from sources in an automatic,
consistent and reproducible way.

Table 2 Studies projects statistics

Project Language Number of builds Failure (%) Age at CI
(in days)

rails/rails Ruby 19,447 35 2,354
ruby/ruby Ruby 15,388 22 5,099
jruby/jruby Ruby 12,085 62 1,074
rapid7/metasploit-framework Ruby 8,839 8 2,571
apache/jackrabbit-oak Java 8,205 42 102
opf/openproject Ruby 7,088 36 287
CloudifySource/cloudify Java 5,742 26 220
Graylog2/graylog2-server Java 5,199 11 470
SonarSource/sonarqube Java 4,690 27 1,013
openSUSE/open-build-service Ruby 4,647 29 341

1 https:// github. com/ rails/ rails.
2 https:// github. com/ ruby/ ruby.
3 https:// github. com/ rapid7/ metas ploit- frame work.
4 https:// github. com/ apache/ jackr abbit- oak.
5 https:// github. com/ opf/ openp roject.
6 https:// github. com/ Cloud ifySo urce/ cloud ify.
7 https:// github. com/ Grayl og2/ grayl og2- server.
8 https:// github. com/ hashi corp/ vagra nt.
9 https:// github. com/ Sonar Source/ sonar qube.
10 https:// github. com/ openS USE/ open- build- servi ce.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 17 of 61 21

4.3 Research questions

We designed our experiments to answer five research questions:
RQ1. (Hyper-Parameter Optimization Comparison) How effective is GA for

HPO compared to existing techniques?
Motivation. To fit our approach into the CI build prediction problem, we must

first tune their hyper-parameters. Since there are many different HPO methods with
different use cases, it is crucial to evaluate the need for an intelligent method such as
GA.

Approach. In order to verify the performance of GA, we compare it with four
methods. These techniques are selected based were chosen based on their popularity
(Yang and Shami 2020), diversity (belonging to different families) and availability
in Python:

1. Random Search (RS): A HPO technique that belongs to the family of model-free
algorithms. This method was proposed to overcome certain limitations of Grid
Search (GS) related mainly to the computational costs random search (RS). RS is
similar to GS; but, instead of testing all values in the search space, RS randomly
selects a pre-defined number of samples between the upper and lower bounds. To
implement RS, we use Hyperopt http:// hyper opt. github. io/ hyper opt/. (the HPO
Python framework) while selecting rand.suggest algorithm. With regards
to its performance, Bergstra and Bengio (2012) argued that RS is more effective
than GS.

2. Tree-structured Parzen Estimators (TPE): is a Bayesian optimization (BO) based
method that, unlike GS and RS, determines the future evaluation points based
on the previously-obtained results. This technique has been widely applied in
practice (Xia et al. 2017b; Guo et al. 2019). We use the implementation of this
technique as provided by Hyperopt using the algorithm tpe.suggest.

3. Bayesian Optimization HyperBand (BOHB): is a multi-fidelity optimization tech-
nique that uses a subset of the original to solve the constraint of limited time and
resources. It has been shown that BOHB outperforms many other optimization
techniques when tuning SVM and DL models (Falkner et al. 2018). To implement
this technique, we use HpBandSter Python library https:// automl. github. io/
HpBan dSter/ build/ html/ index. html..

Table 3 Configuration space for
the hyper-parameters of LSTM

Hyper-parameters Search Space

Number of units range [32,512]
Number of layers range [1,7]
Batch Size range [4,256]
Number of epochs range [2,10]
Optimizer [’adam’, ’rmsprop’]
Dropout probability range [0.01,0.3]
Time step range [30,120]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 18 of 61

4. Particle Swarm Optimization (PSO): is another meta-heuristic conceived by Shi
and Eberhart (1998) that has been widely adopted for complex HPO problems
(Tharwat and Hassanien 2019; Lorenzo et al. 2017). Note that PSO is supported
in Optunity HPO framework https:// optun ity. readt hedocs. io/ en/ lates t/. as the
default option.

In order to ensure a fair comparison, some constraints should be satisfied. First, we
evaluate the different HPO methods using the same hyper-parameter configuration
space. Table 3 summarizes the configuration space for LSTM model. Additionally,
since the studied HPO methods evaluate the candidate configurations based on an
objective function to be optimized, we use the same function to be optimized namely
the validation loss. The training loss functions are threshold-independent metrics
i.e. not sensitive to imbalanced data (Tantithamthavorn et al. 2018a).

After that, to deal with the stochastic nature of HPO methods, we repeat each
experiment 31 times and the median performance is reported as the performance
estimate, as recommended by Arcuri and Briand (2011). On the other hand, we set
the the maximum number of iterations to 50 for RS, TPE, PSO and BOHB; while
we set the number of generations and population size to 5 and 10 respectively for
GA (5 ∗ 10 = 50).

In the next step, the performance metrics are selected. For each experiment on the
selected ten datasets, online validation (cf. Section 4.3) is considered to evaluate the
studied HPO methods. First, the Area Under the ROC Curve (AUC) (cf. Section 4.4)
is used as the classification performance metric. Additionally, the computational
time (CT), the total time needed to complete an experimentation, is also used as the
efficiency metric (Yang and Shami 2020; Wicaksono and Supianto 2018; Xia et al.
2017b; Tantithamthavorn et al. 2018a). Note that AUC is computed on the testing
set while CT is calculated on the training set as the HPO methods are applied on this
set.

It is also worth mentioning that in this work, all the experiments are executed
on a computer equipped with an Intel Core i7-8700k CPU @ 3.20 GHz and using
64-bit based Windows.

RQ2. (Within-project validation) How does our DL-CIBuild approach per-
form compared to ML techniques within projects?

Motivation. The first goal of our empirical study is to evaluate the performance
of our DL-based approach for the CI build failures prediction problem against exist-
ing ML techniques. Thus, we want to investigate the efficiency of considering the
time series dataset which consists of a sequential data of CI build outcomes against
the use of ML techniques trained on state-of-the-art CI related features to assist
developers in automatically identifying build failure.

Approach. We conduct an online validation in which builds are ordered and pre-
dicted chronologically. Similar to prior work by Xia and Li (Xia and Li 2017), we
ranked for each selected project, the builds according to its start time and broke the
whole set of a given project into ten folds. Then, we used the latter five folds as test-
ing sets: At each iteration i (1 ≤ i ≤ 5), the test set fold j (6 ≤ j ≤ 10), the former

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 19 of 61 21

j − 1 folds are selected as training set to train the model. It is worthy to mention, that
we verified for each project and validation iteration, the existence of failed builds.

RQ3. (Cross-project validation) How effective is our approach compared to
ML techniques when applied on cross-projects?

Motivation. Building a model to predict CI build failure requires having labeled
data to train on. However, in real world situation, many projects do not have suf-
ficient historical labeled data to build a classifier (Xia et al. 2017a) (e.g., small or
new project) which may prevent the project team from using a prediction tool. In
this research question, we investigate to what extent a build failure prediction can be
generalized through cross-project prediction.

Approach. Cross-project validation is a the-state-of-art technique to solve the
lack of training data in software engineering (Xia et al. 2017a). Specifically, we
adopt Bellwether strategy (Krishna et al. 2016) as the project-level filter. The Bell-
wether strategy is a recently introduced source filtering method that can further
improve prediction results of existing filtering methods, as reported by Xia et al.
(Xia et al. 2017a). In this strategy, the Bellwethers are selected as the best source
projects according to previous prediction result, and considered as the source pro-
jects in the following cross-project prediction. In this section, we select the bell-
wether as the project providing the best results within online validation (RQ1).

RQ4. (Sensitivity to training size) How effective is our approach when vary-
ing the training set size?

Motivation. After validating the effectiveness of DL-CIBuild under two valida-
tion scenarios, we want to go further by showing the effects of the training data
on the effectiveness of our technique compared to ML techniques which remains
unknown. Knowing the impact of the size of training set is important, as it allows
us to estimate the performance of DL-CIBuild when a small amount of data is pro-
vided. Also, given the same amount of data, the best scores we get, the more useful
an approach is.

Approach. Using the same dataset described in Section 4.2, we train and evalu-
ate our approach against baseline techniques based on different training sizes. Simi-
larly to RQ2, we split the data into 10 folds sorted by the time of the build; then,
we vary the size of the training set while using the same testing fold in each experi-
ment. In the first experiment, 50% of the datasets are used to construct the predictive
models. In the second experiment, the datasets used for the model construction are
increased to 70%. In the third experiment, the datasets used for model construction
are increased to 90%. In the testing phase, we compare the predictive performance
as described in the next section.

RQ5. (Concept drift) To which extent is our approach robust to concept
drift?

Motivation. As the time passes, data can change. In some cases, the performance
of the prediction models can degrade because the learned relationship between the
input and output variables is no longer valid. This problem is called concept drift
(Widmer and Kubat 1996; Tsymbal 2004) which should be detected and addressed
to ensure the successful application of ML/DL based techniques (Singh et al. 2012;
Ekanayake et al. 2009; Zenisek et al. 2019). In this paper, we aim to investigate
whether the CI build failure prediction drifts over time using DL-CIBuild. This

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 20 of 61

would help us assess the need of the model’s retraining to prevent degradation in
performance. On the other hand, if the drift is found to be negligible, this would
indicate the robustness of our proposed approach.

Approach. To study the possible concept drift, we train and test the predictive
performance of our approach over time against baseline techniques. As shown in
Figure 9, we first split the data into 10 folds sorted by the time of the build. In the
first iteration, we train the models using folds 1 to 5 (old data) and folds 2 to 6
(recent data) and compare the predictive performance on the fold 7. In the second
iteration, we compare the old data (i.e. folds from 1 to 5) to the folds 3 to 7 and test
both data on fold 8 etc. In this way, we assess the effectiveness of the approaches
based on data from two different time periods in order to assess whether the predic-
tive performance drifts over time.

4.4 Evaluation metrics

To evaluate the predictive performance (i.e. RQ2-5), we first compute the widely-
used performance evaluation metric F1-score which is defined as follows:

In our study, the recall is the percentage of correctly classified failed builds rela-
tive to all of the builds that actually failed while the precision is the percentage of
detected failed builds that actually failed. These metrics are defined as follows:

where TP is the number of failed builds that are correctly classified as CI failed; FP
denotes the number of passed builds classified as failed; and FN measures the num-
ber of classes of actual CI failed builds that identified as passed.

The second metric we consider in this study the Accuracy. It refers to the pro-
portion of correct predictions made by the model. Formally, Accuracy is defined as
follows:

Moreover, it is important to account for imbalance in a data set as generally failed
builds are much less to occur than past ones in typical software projects (Xie and
Li 2018). Hence, we consider AUC measure which indicates how much a predic-
tion model/rule is capable of distinguishing between classes. A larger AUC value
indicates better prediction performance. The main merit of the AUC is its robustness
toward imbalanced data. For binary classification, AUC is defined as follows (Cer-
vantes et al. 2013):

(1)F1-score = 2 ∗
Precision ∗ Recall

Precision + Recall
∈ [0, 1]

(2)Recall =
TP

TP + FN
∈ [0, 1]

(3)Precision =
TP

TP + FP
∈ [0, 1]

(4)Accuracy =
TP + TN

TP + TN + FP + FN
∈ [0, 1]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 21 of 61 21

4.5 Machine learning benchmark

We compare the prediction performance of our DL-CIBuild approach with five
widely-used ML techniques in previous CI and software engineering research (Xia
et al. 2017a; Ni and Li 2018; Xia and Li 2017; Luo et al. 2017; Hassan and Wang
2017; Ni and Li 2018; Santolucito et al. 2018), namely Decision Tree (DT), Random
Forest (RF), AdaBoost (ADA), Support Vector Classification (SVC) and Logistic
Regression (LR). The initial input to these models is a set of features comprising 21
state-of-the-art CI features from TravisTorrent dataset (Xia et al. 2017a; Ni and Li
2018; Xia and Li 2017; Luo et al. 2017; Hassan and Wang 2017; Ni and Li 2018;
Santolucito et al. 2018). These features are summarised in Table 4.

4.5.1 Data pre‑processing

Data pre-processing is a vital step to obtain better performance of ML models which
comprises data cleansing, normalization, and structure change(Hastie et al. 2009).
As ML models are sensitive to the scale of the inputs, the data are normalized in the
range [0, 1] by using feature scaling. Also, to mitigate the issue related to the imbal-
anced nature of the dataset, we rely on Synthetic Minority Oversampling Technique
(SMOTE) method (Chawla et al. 2002), to resample the training data. Note, that we
did not resample the testing dataset since we want to evaluate ML techniques in a
real-life scenario, where the data is imbalanced. Additionally, for the sake of fair-
ness, we apply Threshold Moving (TM) to all ML techniques.

4.5.2 Parameter tuning for machine learning techniques

We use the best HPO method as the one to be revealed in RQ1. In order to facili-
tate the replication of our results, we provide the selected main parameters and their
respective search spaces for ML techniques as shown in Table 5.

4.6 Inferential statistical test methods used

When applied to the same problem instance, ML and LSTM models may provide
different results on each run. To deal with this stochastic nature, it is important to
assess their effectiveness by performing a large number of runs, at least 30 runs as
suggested in (Arcuri and Briand 2011). Additionally, it is essential to use the statisti-
cal tests that provide support for/rejection of the conclusions derived by analyzing
the obtained results.

(5)AUC =
1 +

TP

TP+FN
−

FP

FP+TN

2
∈ [0, 1]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 22 of 61

Ta
bl

e
4

 C
I-

re
la

te
d

fe
at

ur
es

 e
xt

ra
ct

ed
 fr

om
 T

ra
vi

sT
or

re
nt

M
et

ric
D

es
cr

ip
tio

n
Re

fe
re

nc
e

gi
t_

nu
m

_a
ll_

bu
ilt

_c
om

m
its

N
um

be
r o

f c
om

m
its

 c
on

ta
in

ed
 in

 th
is

 si
ng

le
 b

ui
ld

(X
ia

 e
t a

l.
20

17
a;

 N
i a

nd
 L

i 2
01

7;
 X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

; X
ie

 a
nd

 L
i 2

01
8)

gh
_n

um
_c

om
m

its
_o

n_
fil

es
_t

ou
ch

ed
 N

um
be

r o
f u

ni
qu

e
co

m
m

its
 o

n
th

e
fil

es
 to

uc
he

d
in

 th
e

bu
ilt

co

m
m

its
(X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)

gi
t_

di
ff_

sr
c_

ch
ur

n
 N

um
be

r o
f l

in
es

 o
f c

od
e

ch
an

ge
d

in
 a

ll
bu

ilt
 c

om
m

its
(X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

; H
as

sa
n

an
d

W
an

g
20

17
; X

ie

an
d

Li
 2

01
8)

gh
_d

iff
_fi

le
s_

ad
de

d
 N

um
be

r o
f fi

le
s a

dd
ed

 in
 a

ll
bu

ilt
 c

om
m

its
(X

ia
 e

t a
l.

20
17

a;
 N

i a
nd

 L
i 2

01
7;

 X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gh
_d

iff
_fi

le
s_

de
le

te
d

N
um

be
r o

f fi
le

s d
el

et
ed

 b
y

al
l b

ui
lt

co
m

m
its

(X
ia

 e
t a

l.
20

17
a;

 X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gh
_d

iff
_fi

le
s_

m
od

ifi
ed

 N
um

be
r o

f fi
le

s m
od

ifi
ed

 b
y

al
l b

ui
lt

co
m

m
its

(X
ia

 e
t a

l.
20

17
a;

 N
i a

nd
 L

i 2
01

7;
 X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)
gh

_n
um

_c
om

m
it_

co
m

m
en

ts
N

um
be

r o
f c

om
m

en
ts

 o
f a

ll
bu

ilt
 c

om
m

its
(X

ia
 e

t a
l.

20
17

a;
 X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)
nu

m
_o

f_
di

sti
nc

t_
au

th
or

s
 N

um
be

r o
f d

ist
in

ct
 a

ut
ho

rs
 in

 a
ll

bu
ilt

 c
om

m
its

(X
ia

 e
t a

l.
20

17
a;

 X
ie

 a
nd

 L
i 2

01
8)

gh
_b

y_
co

re
_t

ea
m

_m
em

be
r

W
he

th
er

 th
e

co
m

m
it

th
at

 h
as

 tr
ig

ge
re

d
th

e
bu

ild
 w

as
 a

ut
ho

re
d

by
 a

 c
or

e
te

am
 m

em
be

r
(X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)

gh
_i

s_
pr

W
he

th
er

 th
is

 b
ui

ld
 w

as
 tr

ig
ge

re
d

as
 p

ar
t o

f a
 p

ul
l r

eq
ue

st
on

G

itH
ub

.
(L

uo
 e

t a
l.

20
17

)

gh
_d

iff
_s

rc
_fi

le
s

 N
um

be
r o

f s
rc

 fi
le

s c
ha

ng
ed

 b
y

al
l b

ui
lt

co
m

m
its

(X
ia

 e
t a

l.
20

17
a;

 X
ia

 a
nd

 L
i 2

01
7)

gh
_d

iff
_d

oc
_fi

le
s

 N
um

be
r o

f d
oc

um
en

ta
tio

n
fil

es
 c

ha
ng

ed
 b

y
al

l b
ui

lt
co

m
m

its
(X

ia
 e

t a
l.

20
17

a;
 X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)
gh

_d
iff

_o
th

er
_fi

le
s

 N
um

be
r o

f fi
le

s w
hi

ch
 a

re
 n

ei
th

er
 so

ur
ce

 c
od

e
no

r d
oc

um
en

ta
-

tio
n.

(X
ia

 e
t a

l.
20

17
a;

 X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gi
t_

di
ff_

te
st_

ch
ur

n
 N

um
be

r o
f l

in
es

 o
f t

es
t c

od
e

ch
an

ge
d

in
 a

ll
bu

ilt
 c

om
m

its
(X

ia
 e

t a
l.

20
17

a;
 X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

; H
as

sa
n

an
d

W
an

g
20

17
)

gh
_d

iff
_t

es
ts

_a
dd

ed
 N

um
be

ro
f t

es
t c

as
es

 a
dd

ed
 in

 a
ll

bu
ilt

 c
om

m
its

(X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gh
_d

iff
_t

es
ts

_d
el

et
ed

 N
um

be
r o

f t
es

t c
as

es
 d

el
et

ed
 in

 a
ll

bu
ilt

 c
om

m
its

(X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gh
_t

ea
m

_s
iz

e
 N

um
be

r o
f d

ev
el

op
er

s t
ha

t c
om

m
itt

ed
 fr

om
 th

e
m

om
en

t t
he

bu

ild
 w

as
 tr

ig
ge

re
d

an
d

3
m

on
th

s b
ac

k.
(X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

; H
as

sa
n

an
d

W
an

g
20

17
)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 23 of 61 21

Ta
bl

e
4

 (c
on

tin
ue

d)

M
et

ric
D

es
cr

ip
tio

n
Re

fe
re

nc
e

gh
_s

lo
c

 N
um

be
r o

f s
ou

rc
e

lin
es

 o
f c

od
e,

 in
 th

e
en

tir
e

re
po

si
to

ry
 a

t t
he

tim

e
of

 th
is

 b
ui

ld
.

(X
ia

 e
t a

l.
20

17
a;

 X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
; X

ie
 a

nd
 L

i
20

18
)

gh
_t

es
t_

lin
es

_p
er

_k
lo

c
 N

um
be

r o
f l

in
es

 in
 te

st
ca

se
s p

er
 1

00
0

gh
_s

lo
c.

(X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

gh
_t

es
t_

ca
se

s_
pe

r_
kl

oc
 N

um
be

r o
f t

es
t c

as
es

 p
er

 1
00

0
gh

_s
lo

c.
(X

ia
 a

nd
 L

i 2
01

7;
 L

uo
 e

t a
l.

20
17

)
gh

_a
ss

er
ts

_c
as

es
_p

er
_k

lo
c

N
um

be
r o

f a
ss

er
tio

ns
 p

er
 1

00
0

gh
_s

lo
c.

(X
ia

 e
t a

l.
20

17
a;

 X
ia

 a
nd

 L
i 2

01
7;

 L
uo

 e
t a

l.
20

17
)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 24 of 61

4.6.1 Statistical tests for RQ1, RQ4 and RQ5

To perform multiple comparison tests, we cluster the approaches using Scott-Knott
Effect Size Difference (ESD) method (Tantithamthavorn et al. 2017, 2018b). Scott-
Knott partitions the set of treatment means (e.g. means of model performance) into
statistically distinct groups with non-negligible difference (i.e., 𝜌−value < 0.05).
This clustering algorithm has been widely applied to different software engineer-
ing domains such as ranking the classification techniques (Ghotra et al. 2015) and
comparing HPO methods (Tantithamthavorn et al. 2018a). We use the implementa-
tion of the Scott-Knott test provided by the ScottKnott R package (Jelihovschi
et al. 2014). The Scott-Knott test ranks each approach exactly once, however several
approaches may appear within one rank.

4.6.2 Statistical tests for RQ2 and RQ3

W employ Wilcoxon signed rank test (Wilcoxon et al. 1970) in order to detect sig-
nificant performance differences between the algorithms under comparison (� is
set at 0.05). We also use the Cliff’s delta, � , a non-parametric effect size measure
for ordinal data (Cliff 1993) to assess the difference magnitude. The effect size is

Table 5 Configuration space
for the hyper-parameters of ML
models

Model Hyper-parameters Search Space

SVC C [’linear’, ’rbf’]
kernel range [1,10]
max of iterations range [200,5000]

DT Criterion [’gini’, ’entropy’]
max depth range [10,100], None
min samples split range [2,10], None
min samples leaf range [1,5], None
max features [’sqrt’, ’log2’, None]

RF Number of estimators range [50,600]
max depth range [10,100], None
Criterion [’gini’, ’entropy’]
min samples split range [2,10], None
min samples leaf range [1,5], None
max features [’sqrt’, ’log2’, None]

ADA random state [None,0]
Number of estimators range [50,600]
Algorithm [’SAMME’, ’SAMME.R’]
learning rate range [0,1]

LR max of iterations range [200,5000]
penalty [’l1’,’l2’,’none’]
solver [’newton-cg’, ’lbfgs’,

’sag’,’saga’,’liblinear’]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 25 of 61 21

considered negligible when ∣ 𝛿 ∣< 0.147 , small when 0.147 ≤∣ 𝛿 ∣< 0.33 , medium
when 0.33 ≤∣ 𝛿 ∣< 0.474 and large otherwise (Romano et al. 2006).

5 Experimental results

In this section, we present the results of our empirical study with respect to the five
research questions.

5.1 RQ1. Results of HPO comparison

The experiments of applying GA and other four different HPO methods when
applied to LSTM models are summarized in Table 6. This table shows the average
performance of each HPO methods evaluated based on AUC and the Computational
Time (CT).

With regards to AUC scores, we clearly see that meta-heuristics methods, GA
and PSO showed significantly better performances than other HPO methods. Using
PSO, the LSTM model can achieve 60% in terms of AUC, while with GA, it can
achieve a better performance with an improvement of 5%. This confirms that meta-
heuristic techniques are more suitable to complex search spaces as stated by previ-
ous studies (Yang and Shami 2020). Then, we see that BOHB method have shown a
better performance than TPE as excepted since BOHB combines the advantages of
Bayesian optimization and Hyperband by using TPE as a standard surrogate model.
Lastly, we have found that TPE and RS obtained 53% and 52% in terms of AUC
respectively but with no significant difference.

With the same search space size, we have found that BOHB is faster than other
HPO methods. Conversely, BOHB does not yield the best performance in our exper-
iments. On the other hand, the computation time of RS and TPE is on average better
than meta-heuristic algorithms due to their lower algorithmic complexities (Yang
and Shami 2020). In addition, PSO is faster than GA since the latter requires an
additional computational time dedicated to genetic operations (i.e. mutation and
cross-over). But statistically, the difference is not significant (same ranking group).

Table 6 The ranking of the
HPO methods for LSTM,
divided into distinct groups that
have a statistically significant
difference in the mean

AUC CT

Method Rank Avg (%) Method Rank Avg(sec)

GA 1 65 BOHB 1 386
PSO 2 60 RS 2 520
BOHB 3 56 TPE 3 765
TPE 4 53 PSO 4 1,670
RS 52 GA 1,750

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 26 of 61

Ta
bl

e
7

 P
er

fo
rm

an
ce

 o
f D

L-
C

IB
ui

ld
 v

s M
L

te
ch

ni
qu

es
 u

nd
er

 o
nl

in
e

va
lid

at
io

n

Th
e

hi
gh

es
t v

al
ue

s o
f t

he
 p

er
fo

rm
an

ce
 m

et
ric

 a
re

 g
iv

en
 in

 b
ol

d

A
U

C

F1
A

cc
ur

ac
y

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

cl
ou

di
fy

72
52

58
58

61
53

52
23

26
28

34
29

85
51

62
72

72
41

gr
ay

lo
g2

-s
er

ve
r

64
53

60
57

59
59

30
12

14
12

14
14

72
59

53
42

59
61

ja
ck

ra
bb

it-
oa

k
61

52
54

57
57

54
52

56
31

54
45

48
63

51
42

55
48

49
jru

by
69

53
55

53
54

53
77

70
68

55
41

61
72

61
59

60
47

55
m

et
as

pl
oi

t-f
ra

m
ew

or
k

60
55

63
57

64
53

22
17

23
19

24
15

81
75

70
56

79
70

op
en

-b
ui

ld
-s

er
vi

ce
67

53
60

59
56

58
46

27
38

36
31

35
77

56
49

48
55

54
op

en
pr

oj
ec

t
62

52
53

53
53

51
45

41
31

37
39

47
70

55
55

57
58

47
ra

ils
66

52
54

52
54

51
52

32
35

16
34

43
69

61
60

65
63

34
ru

by
74

55
58

57
59

56
64

51
49

43
40

50
77

54
47

57
63

54
so

na
rq

ub
e

57
57

62
60

63
59

35
36

44
40

43
34

66
63

70
70

71
77

M
ed

ia
n

65
53

58
57

58
53

49
34

33
37

37
39

72
57

57
57

61
54

Av
er

ag
e

65
53

58
56

58
55

47
36

36
34

35
38

73
58

57
58

62
54

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 27 of 61 21

DL-CIBuild can achieve higher predictive performance when using GA as
HPO method with an improvement of 5% compared to PSO. But this comes
with a higher computational time. Nevertheless, we use GA as HPO method
in order to guarantee near-to-optimal configurations for LSTM models. For the
sake of a fair comparison, we also use GA as HPO method for ML models.

5.2 RQ2. Results of online validation

Table 7 reports the average (of 5 online validation iterations) AUC, F1 and accuracy
scores for each studied project. Note that DL-CIBuild, all the involved techniques
are executed 31 times to deal with their stochastic nature. Then, we computed the
median values of each experiment. Moreover, Table 8 shows the statistical compari-
sons of these experiments.

With regards to AUC, we clearly see that, for nine out of ten projects, the best
scores are obtained by DL-CIBuild achieving on median 65% with an improvement
of 7% over ML techniques. On the other hand, for the different projects, the sta-
tistical analysis provides evidence that our approach performs better than the ML
techniques with large Cliff’s delta effect sizes. For instance, in the ruby project for
which we obtained the best AUC results, our approach achieved 74% in terms of
AUC compared to 59% for RF, 58% for LR, 57% for ADA, 56% for SVC and 55%
for DT; which represents an improvement of 15% over ML for this project. However,
in the sonarqube and metasploit-framework project, RF was slightly bet-
ter than DL-CIBuild. One explanation for this results could be related to the fact
that the CI-related features are more efficient to predict the failure than the temporal
information for these projects.

Overall, the results for AUC reveal that DL-CIBuild can reach a better trade-off
(i.e., balance) between both positive (i.e., failed) and negative (i.e., passed) accura-
cies, by applying threshold moving, than all the ML techniques even with resam-
pling. This result lends support to previous results confirming that threshold-moving
is a better choice in training cost sensitive neural networks (Zhou and Liu 2005).

Looking at F1-scores, we also see that DL-CIBuild achieved the best results for
6 out of 10 projects with a median score of 49% with an improvement of 10% as
compared to the results achieved by SVC (the best ML performing technique). The
statistical tests reveal that DL-CIBuild outperforms ML with medium (compared to

Table 8 Statistical tests results of DL-CIBuild compared to ML techniques under online validation

DL-CIBuild vs. ADA vs. DT vs. LR vs. RF vs. SVC

Accuracy p-value 10−9 10−9 10−11 10−6 10−10

Effect Size Large Large Large Large Large
AUC p-value 10−11 10−16 10−9 10−9 10−14

Effect Size Large Large Large Large Large
F1 p-value 10−5 10−3 10−4 10−5 10−3

Effect Size Medium Medium Medium Large Medium

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 28 of 61

ADA, DT, LR and SVC) to large effect sizes (with RF). Exceptionally, in sonar-
qube project, we found evidence for LR algorithm to be better than DL-CIBuild.
But overall, we clearly see that LR achieved poor performances in terms of
F1-scores of 33% in median. This is especially the case for graylog2-server
and metasploit-framework projects as LR turns out to be inefficient to cor-
rectly detect failed builds.

Broadly speaking, F1-score results demonstrate a compelling superiority of DL-
CIBuild to identify more failed builds than ML techniques.

As for the accuracy scores, the obtained results also show that DL-CIBuild is a
better performer than the five considered ML techniques, with a significant improve-
ment of 11% in median, and large effect sizes as shown in Table 8. Additionally, the
accuracy scores of our approach range from 63% to 85% while achieving in median
a high score of 72% and for 9 out of 10 projects, the accuracy values of DL-CIBuild
exceed those of ML techniques.

To sum up, it is worth noting that, due to the highly imbalanced nature of the
analyzed data (i.e., only a small portion of the builds are failed) as can be seen from
Table 2, the achieved AUC, F1 and accuracy results by DL-CIBuild are considered
significant. Furthermore, we can see from the statistical results, that ML modest per-
formance may not be only related to the nature of the dataset as we applied resam-
pling to the training data using SMOTE, but this could be related to the complex
and erratic temporal dependencies between the builds that are hard to capture with
traditional ML techniques. Thus, DL-based time series models seem more appropri-
ate to such a problem.

DL-CIBuild can achieve higher predictive performance than state-of-the-art
ML techniques with a statistical significance under online-validation. Instead it
achieved, in median, 65% and 49% in terms of AUC and F1-score respectively
while reaching 72% of the overall classification accuracy. Moreover, we find
that jruby project results outperform all the other projects by achieving the
best scores in median. Thus, we select this project as the source (i.e. training
set) project in the following cross-project prediction.

5.3 RQ3. Results of cross‑projects validation

As mentioned earlier, jruby project exhibited the highest prediction capability
among the studied projects by achieving the best scores on average (and in median)
and it is considered as the Bellwether for cross-project strategy. Hence, we train DL-
CIBuild, based on jruby project, using our evaluation metrics, the Area Under the
ROC Curve (AUC), F1-score, and accuracy values, to measure the performance of
our classifier. Table 9 presents the effectiveness of cross-project modeling compared
to ML techniques while Table 10 reports the statistical tests results.

First, the results show that DL-CIBuild achieves a performance of AUC value
of 72% in median which ranges from 63-82%. Six projects out of nine show good
performance results (≥ 70%) and cloudify achieves high AUC value of 82%.
Compared to within-project validation, these results show that our approach
can achieve with cross-projects a significant improvement of 7% in median over

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 29 of 61 21

Ta
bl

e
9

 P
er

fo
rm

an
ce

 o
f D

L-
C

IB
ui

ld
 v

s M
L

te
ch

ni
qu

es
 u

nd
er

 c
ro

ss
-p

ro
je

ct

Th
e

hi
gh

es
t v

al
ue

s o
f t

he
 p

er
fo

rm
an

ce
 m

et
ric

 a
re

 g
iv

en
 in

 b
ol

d

A
U

C

F1
A

cc
ur

ac
y

Pr
oj

ec
t

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

D
L-

C
IB

ui
ld

D
T

LR
AD

A
RF

SV
C

cl
ou

di
fy

82
52

50
52

56
51

76
31

2
36

34
41

89
52

74
39

66
29

gr
ay

lo
g2

-s
er

ve
r

77
53

50
55

55
53

51
16

12
20

20
21

87
65

42
66

54
23

ja
ck

ra
bb

it-
oa

k
74

50
54

57
53

57
70

46
55

59
48

59
76

49
52

53
53

53
m

et
as

pl
oi

t-f
ra

m
ew

or
k

63
52

60
54

53
52

29
13

21
12

14
15

86
65

72
76

79
41

op
en

-b
ui

ld
-s

er
vi

ce
70

51
56

52
52

52
57

28
35

35
43

26
78

52
65

47
43

63
op

en
pr

oj
ec

t
63

51
55

53
52

51
51

33
34

31
25

22
68

57
63

60
62

58
ra

ils
72

50
55

51
52

50
62

43
40

43
39

51
77

42
59

46
53

35
ru

by
73

50
55

51
52

52
61

28
37

23
23

37
85

42
46

60
63

31
so

na
rq

ub
e

64
51

55
57

52
50

46
42

41
41

36
43

77
34

52
58

46
28

M
ed

ia
n

72
51

55
53

52
52

57
31

35
35

34
37

78
52

59
58

54
35

Av
er

ag
e

71
51

54
53

53
52

56
31

31
33

31
35

80
51

58
56

58
40

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 30 of 61

online validation with a large effect size. Except for ruby whose AUC score
slightly decreased from 74% to 73%, may be because the data in this project is
larger than the bellwether data, all the studied projects show a better performance
which indicates that DL-CIBuild a very promising solution to mitigate the lack of
data, especially for new software projects. Additionally, we observe an improve-
ment of 17% in median over ML techniques whose results are worse than their
within-project scores. The statistical tests results show that the difference is sig-
nificant with large effect sizes.

The same observations for AUC can be applied to F1-score for which we
recorded for DL-CIBuild a significant improvement of 8% compared to within-pro-
ject results with a medium effect size. Also, DL-CIBuild is the best technique across
all the studied projects by achieving in median 57% compared to ML techniques
that showed modest to low F1-scores of 37% for SVC, 35% for LR and ADA, 34%
for RF and 31% for DT. The statistical tests results show that DL-CIBuild is signifi-
cantly better with large effect sizes, as reported in Table 10. Another observation to
report from these results is that all ML techniques have shown a drop in F1-scores;
which confirms previous findings in the literature who pointed out that ML tech-
niques are less effective for cross-project prediction (Choetkiertikul et al. 2018;
Abdalkareem et al. 2020; Zhang et al. 2016). This result shows that when building
ML techniques under cross-project prediction, the target project has a low collinear-
ity with the source project features.

Looking at the classification accuracy, we see that the scores are significantly
improved compared to within project results, with a small effect size, for eight pro-
jects out of nine by achieving in median 78% (and 80% on average) and the accuracy
values range from 68-89%. Similarly to online validation, DL-CIBuild obtained bet-
ter accuracy results compared to ML with significant differences and large effect
sizes.

Results of RQ3 show a substantial improvement for DL-CIBuild compared to
online validation results by achieving 72%, 57% and 78% in terms of AUC,
F1-score and accuracy, respectively. These results indicate that our approach is
effective when learning from a cross-project training corpus. We explain these
results by the fact that in a cross-project setting, our approach is fed with more

Table 10 Statistical tests results of DL-CIBuild under cross-projects compared to its achieved within-
project results as well as ML techniques

DL-CIBuild vs. online validation vs. DT vs. LR vs. ADA vs. RF vs.
SVC

AUC p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Effect Size Large Large Large Large Large Large
F1 p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Effect Size Medium Large Large Large Large Large
Accuracy p-value 0.01 < 0.001 0.002 0.002 0.002 < 0.001

Effect Size Small Large Large Large Large Large

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 31 of 61 21

data. Moreover, our proposed approach still outperforms state-of-the-art ML
techniques.

5.4 RQ4. Results of the sensitivity to training size

We have validated the effectiveness of DL-CIBuild in terms of AUC, F1-score and
accuracy through the RQ2 and RQ3. In this experiment, we want to go further by
assessing the extent to which our approach can perform when varying different
amounts of data compared to other ML techniques.

Figure 10 presents the performance (in terms of AUC, F1 and accuracy) on the
test dataset, of the studied approaches, after training for 31 times with 50%, 70% and
90% of the dataset. Additionally, Table 11 shows the rank differences for all of the
studied approaches when varying the training sizes.

Fig. 10 Comparison of the prediction performance with different training sets sizes

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 32 of 61

Looking at the plotted boxplots of DL-CIBuild, we observe that, for all the com-
puted measures, the performance of our approach increases up to 90% of the data-
sets for which the best scores were recorded. For instance, increasing the training
from 50% to 90% of the datasets, results in an improvement of 3%, 5% and 9% in
terms of AUC, F1 and accuracy in median respectively. Moreover, Table 11 shows
that there is a clear separation of AUC, F1 and accuracy scores of DL-CIBuild into
distinct Scott-Knott ranks for 50% and 90% of training data. However, the scores
seem comparable when training on 70% and 90% of the datasets; which means that
our approach plateaus out from 70%. Nevertheless, we can conjecture that an advan-
tage of using our approach in practice is that, as the project ages and more CI build
records are available, DL-CIBuild will reach higher scores.

As compared to ML techniques, we clearly see that DL-CIBuild is better across
different training set sizes. Moreover, Table 11 shows that for AUC scores, DL-
CIBuild is statistically better than other techniques even when trained only on 50%
of the datasets. As for F1 and accuracy scores, we see that DL-CIBuild share the
same ranking with other ML but achieves better scores. Overall, we conjecture that,
for different training sizes, our approach is more suitable than the ML techniques.

Table 11 The ranking of the approaches when varying the training size, divided into distinct groups that
have a statistically significant difference in the average (Avg)

AUC F1 Accuracy

Approach Avg(%) Rank Approach Avg(%) Rank Approach Avg(%) Rank

DL-CIBuild-90 64 1 DL-CIBuild-90 48 1 DL-CIBuild-90 69 1
DL-CIBuild-70 63 DL-CIBuild-70 46 DL-CIBuild-70 68
DL-CIBuild-50 61 2 DL-CIBuild-50 43 2 RF-50 64 2
RF-50 60 3 RF-50 39 RF-70 62
ADA-70 60 4 LR-70 37 3 DT-50 62
RF-90 60 LR-50 37 4 ADA-50 62
RF-70 59 RF-90 36 ADA-70 62
ADA-90 59 LR-90 36 DT-90 60
LR-70 59 RF-70 35 RF-90 60
LR-50 59 ADA-50 35 ADA-90 60
ADA-50 59 DT-70 35 DL-CIBuild-50 60
LR-90 58 SVC-90 34 DT-70 59
DT-90 56 5 DT-50 34 SVC-50 57 3
DT-50 56 DT-90 33 SVC-70 56
DT-70 56 SVC-70 32 LR-70 56
SVC-50 56 ADA-90 31 LR-50 55
SVC-70 55 ADA-70 31 SVC-90 53
SVC-90 54 SVC-50 31 LR-90 51

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 33 of 61 21

The sensitivity analysis shows that our approach is more effective in CI build
failure prediction than other ML techniques considering different training
sizes. Although DL-CIBuild is able to work well for reduced amount of train-
ing data, its performance can be further improved within larger datasets.

5.5 Results of the concept drift evaluation

In the last evaluation, we study the extent to which the approaches under evaluation
suffer from concept drift (i.e. the degradation in the predictive performance over
time (Widmer and Kubat 1996)). Figure 11 presents the performance (in terms of
AUC, F1 and accuracy) on the test dataset, of the studied approaches, after train-
ing for 31 times using old (in red) and recent (in blue) training data. Additionally,
Table 11 shows the ranks for all of the studied approaches when training in different
time intervals.

As shown in Figure 11, we observe that, for all the computed measures, the per-
formance of DL-CIBuild slightly increases when training the models on recent train-
ing data. For instance, we recorded a median improvement of 2% in terms of AUC
when training on more recent data. However, when looking at Table 12, we see that
the obtained results on both recent and old data seem to be comparable (same rank-
ing group). These results indicate that while predicting the next builds is better when
training on more recent build records, the data stream does not seem to be drifting

Fig. 11 Comparison of the prediction performance of DL-CIBuild against ML techniques trained on old
and recent data

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 34 of 61

for our approach. Thus, the models of DL-CIBuild do not need to be frequently
retrained.

With regard to ML techniques, we found a significant drift in the performance of
LR and ADA techniques while the RF, SVC and DT seem to be more robust to the
concept drift as their results seem to be comparable using both old and recent data.
But overall, we conjecture that, for different time intervals, our approach is more
suitable than the ML techniques.

Unlike ADA and LR techniques, our approach showed an effective robustness
to the concept drift which indicates that the latter do not need to be frequently
retrained. Additionally, the results reveal that, again, DL-CIBuild is statically
better than the baselines considering different training time intervals.

6 Discussions and implications

In this section, we discuss our findings and their implications for CI developers,
researchers and tool builders.

6.1 For CI developers

Usage scenarios, benefits and costs of using our tool. We have shown that our
approach is able to effectively predict the CI build results by achieving good results,
reaching up to 80% in terms of AUC. The typical usage scenario of our tool is to
provide suggestions on suspicious CI builds. Hence, DL-CIBuild allow teams to
check their estimation of CI build results by providing accurate predictions on their

Table 12 The ranking of the approaches when varying the training time, divided into distinct groups that
have a statistically significant difference in the average (Avg)

AUC F1 Accuracy

Approach Avg Rank Approach Avg Rank Approach Avg Rank

DL-CIBuild-recent 67 1 DL-CIBuild-recent 48 1 DL-CIBuild-recent 70 1
DL-CIBuild-old 65 DL-CIBuild-old 46 DL-CIBuild-old 68
LR-recent 58 2 LR-recent 39 2 LR-recent 60 2
RF-recent 56 3 RF-old 36 3 ADA-recent 59
RF-old 56 SVC-recent 35 RF-old 57
LR-old 56 4 DT-recent 35 ADA-old 57 3
ADA-recent 56 LR-old 35 RF-recent 56
SVC-old 56 SVC-old 34 SVC-recent 56
SVC-recent 55 RF-recent 34 LR-old 54
ADA-old 54 5 DT-old 34 SVC-old 54
DT-recent 53 6 ADA-old 34 DT-old 52
DT-old 53 ADA-recent 33 DT-recent 45 4

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 35 of 61 21

builds that are likely to fail. In this way, developers can cut off the expenses of CI
build process. Such accurate predictions can help save the build generation time and
effort, especially when there are limited resources. However, the cost is that some-
times some few failed builds may be missed or result in a waste of effort on false
positives. Additionally, developers cannot simply analyze the warnings made by our
tool in isolation, but rather, they need the reasons behind the failure to easily local-
ize it. Nonetheless, more details on the reasons for the failure are important, we plan
to extend our approach with further support to software developers by providing suf-
ficient details about what retro-actions needed to fix a failed build.

DL-CIBuild can run faster. One of the acknowledged drawbacks of using our
approach is that it is computationally expensive due to the massive training time of
LSTM models as well as using Genetic Algorithm (GA) for Hyper-parameters Opti-
mization (HPO). In order to mitigate this issue, we improve the efficiency of GA
by enabling the parallel evaluation of the configurations in each generation (which
includes the training of LSTM models using the candidate configurations). By inte-
grating this parallelization mechanism, we significantly reduced the execution time
of GA as can be shown in Figure 12. As we clearly see, the optimized version of
GA can even run faster than BOHB technique that also supports the parallelization
(Yang and Shami 2020).

The time of GA can be optimized in other ways: We can reduce the size of the
hyper-parameter search space to better value ranges or defining other termination
conditions for example when there has been no improvement in the population for K
iterations.

6.2 For researchers

Researchers could investigate periodicity in build failure. Our study analysis
lends support to previous research efforts (Rausch et al. 2017) showing that many
failed builds occurred consecutively which indicates that if the build failed, the next
build is more likely to fail as well. This finding may encourage researchers to get
insights into the periodic trends of build failure which would help researchers to
enhance the CI practice. Researchers can further analyse the periodicity of CI build
failures and investigate what software engineering activities may link with such fail-
ure periods, e.g., feature requests, bug fixes, refactoring, release preparation, etc.

Deep learning LSTM is a suitable modelling choice for software engineer-
ing problems for which the temporal dimension is important. To the best of our
knowledge, our work is the first attempt to use deep learning LSTM for the problem
of learning CI build failures. The use of LSTM models has allowed to automatically
learn the periodicity of build results and use this for predicting build failure. The
evaluation results demonstrate the significant improvement that our DL approach
has brought in terms of predictive performance especially with comparison to ML
techniques. These results represent a significant improvement that can help research-
ers to mitigate the issues related to feature engineering which is a tedious and error-
prone process that needs specific expertise with the domain knowledge to generate
features for ML models. Moreover, DL-CIBuild has shown effectiveness in handling

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 36 of 61

the lack of data considering cross-project validation while no existing solution
has been demonstrated to work at this performance scale. Knowing that software
engineering tasks are process-based where the temporal dimension is of crucial
importance, our proposed approach can serve as the baseline for further research
in the application of DL and LSTM models to time series problems in software
engineering.

Dynamic selection of the classification threshold. Another possible direction
to enhance the prediction accuracy of deep learning LSTM models is to accurately
set the classification threshold (above which a build is considered failed) which can
highly impact the prediction results. As illustrated in Figure 13, we can see an exam-
ple highlighting the importance of threshold moving from the Ruby project. In this
figure, the chart (a) plots the output of our LSTM model (which is following the
real trend), while the chart (b) shows the prediction results when the classification
threshold is set by default (=0.5) which results in classifying all the builds as suc-
ceeding (none of the failed builds can be detected). Based on these observations,
an important research direction for CI researchers is to consider adaptive thresh-
old selection over time when conceiving DL-based models. This selection can be
performed dynamically over time, i.e., adapted depending on the project’s activity
period such as major/minor releases, new features, library dependencies upgrade/
migration, code reengineering, code optimization, etc. We conjecture that a dynamic
selection can be an effective solution for deep learning LSTM based prediction.

Can the predictive performance be improved with re-sampling? So far, we
showed that DL-CIBuild provides an effective improvement over the ML techniques
without re-sampling but instead using Threshold Moving (TM). Unlike sampling,
TM does not rely on the manipulation of the training set but instead on manipu-
lating the classifier output. However, one can argue that the use of resampling can
further improve the identification of CI build failures for DL-CIBuild, even though
the latter has shown less sensitivity to the class imbalance problem as pointed out in

Fig. 12 Theimpact of the training set size on the execution time to run GA before (blue) and after (green)
parallelization compared to BOHB (in red)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 37 of 61 21

our previous research questions (RQ2+RQ3). Thus, we conduct a set of additional
experiments to re-balance the input data prepared in Section 2(online and cross-
project validations) using SMOTE (Chawla et al. 2002) the standard oversampling
approach; and re-run the LSTM-RNN learning process on the new balanced data.
Similar to (Buda et al. 2018), the combination of TM and SMOTE is also tested. To
provide a comprehensive comparison, we compute the F1-score, AUC score and the
overall accuracy. Figure 14 shows the obtained results using SMOTE (in red), TM
(in blue) and by combining the two approaches (in green). Considering online vali-
dation, we observe that framework shows a better performance using TM than when
applying SMOTE with a statistically significant (but small) improvement of 4% in
terms of AUC and F1 respectively.

Moreover, combining the two approaches can slightly enhance the TM results by
2% in terms of AUC and F1 respectively. However, the statistical test suggests that
the difference between TM and the combination is negligible. Hence, using TM on
a balanced dataset can provide comparable results to applying it to the original data.
Additionally, the overall accuracy of SMOTE is slightly better due to the skewed
data distribution in the testing set. When it comes to cross-project, the three strate-
gies seem comparable with no significant differences for F1, AUC and the accuracy.
This suggests that using although SMOTE is effective, it is not so good as thresh-
old-moving which is in line with previous studies results(Zhou and Liu 2005; Buda
et al. 2018). Additionally, taking into account the drawbacks of re-sampling such as
over-fitting (Tantithamthavorn et al. 2018a) and the computational expense (Bhowan
et al. 2009), we advocate that threshold-moving alone can be successfully applied.

6.3 For tool builders

Feedback mechanisms to predict build failures. CI services such as Travis CI
could provide mechanisms for developers to estimate the likelihood that their cur-
rent build would fail. Information about the predicted build failures can help the
software development team to avoid time overhead. Such information would provide
decision support to avoid useless build runs or suggest running builds during project

(a) Failure prediction probability. (b) Failure prediction result when the thresh-
old is set to 0.5.

Fig. 13 An example showing the impact of the threshold moving on the prediction accuracy extracted
from the project Ruby

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 38 of 61

inactivity periods (e.g., out of the working hours) in order to avoid the risk of reduc-
ing the team’s productivity and release delays.

Retro-actions to fix the build failure. Besides failure prediction, tools are
needed to help developers fixing build breakages. One possible direction is to define
the delegated developers to fix the build which may result in a better management of
the resources. We also encourage tool builders to go further by recommending the
relevant actions and code changes needed to fix the failed build.

Dealing with concept drift. While in RQ5, we showed that DL-CIBuild is robust
to concept drift, its performance can be further improved when training on more
recent data. This result would encourage us and other tool builders to upgrade the
prediction tools in a way to allow re-fitting the models periodically using the most
recent historical data. However, the main difficulty remains in detecting the right
moment when the model needs to be re-trained. One possible solution to this prob-
lem is to monitor the prediction performance and if it is degraded below a certain

Fig. 14 Comparison of DL-CIBuild results with SMOTE (red), Threshold Moving (blue) and by combin-
ing them (green)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 39 of 61 21

threshold (i.e. a concept drift is detected), an alarm is triggered to re-train the model.
This threshold can be configured by the tools users.

Importance of hyper-parameters tuning. In our appendices (Appendix A,
Appendix B, Appendix 1 and Appendix 1), we provide all the optimal obtained by
the Genetic Algorithm (GA) for each project and experiment considering different
validations. We notice that the optimal parameters change over time and differ from
one project to another. This highlights the importance of exploring the parameter
space periodically in order to ensure the performance stability/improvement.

7 Related work

This section presents the research around this topic. First, we review research
works about CI builds prediction. Then, we present the studies performed to ana-
lyse CI builds. Finally, we provide insights into the application of HPO of ML/DL
approaches.

7.1 Prediction of CI builds

Many research works have introduced prediction models to predict the build status.
However, we only focus on works dedicated to CI environment that has different
workflow and can suffer from different latency as stated by Hassan and Wang (2017)
and Hilton et al. (2016). For the sake of clarity and completeness of the reporting,
we summarise them in Table 13, presenting their key information, e.g., used models,
along with a brief description of the methodology employed to address their objec-
tives and the achieved results.

Xia and Li (2017) compared nine ML models to construct CI prediction mod-
els of 126 open source projects hosted on GitHub. Their experiments were based
on both cross-validation and online scenarios. In cross-validation, their models
achieved an Area Under the ROC Curve (AUC) score of over 70%. However, under
the online scenario, they observed a tendency for their prediction scores to decrease
up to 60% of AUC. In both scenarios, they found that Decision Tree (DT) and Ran-
dom Forest (RF) achieved the best performance scores.

Ni and Li (2017) employed AdaBoost (ADA) to predict CI build failures of 532
CI projects. This adaption achieved an AUC of 75%, using 50% of the dataset as
training set and last 50% instances as test set.

Hassan and Wang (2017) proposed the prediction model of CI build failure on
three build systems, namely Ant, Maven and Gradle, under the cross-project pre-
diction and cross-validation scenarios. Using RF, they achieved over 90% of AUC
scores for the considered build systems. Additionally, the cross-validation provided
better results. However, when we looked at the provided dataset, we found that there
is a large number of redundant lines that may influence the validity of the reported
results. We also found that the dataset is perfectly balanced (45% of failed builds)
which is not the case in practice as it is generally known that failed builds are much

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 40 of 61

Ta
bl

e
13

A

n
ov

er
vi

ew
 o

f t
he

 li
te

ra
tu

re
 o

n
th

e
pr

ed
ic

tio
n

of
 C

I b
ui

ld
 o

ut
co

m
e

Su
m

m
ar

y
Re

su
lts

D
at

as
et

C
on

si
de

re
d

M
od

el
s

Re
fe

re
nc

es

Em
pi

ric
al

 st
ud

y
to

 c
om

pa
re

 tw
o

da
ta

 se
le

ct
io

n
fil

te
rs

 in
cl

ud
in

g
B

ur
ak

 F
ilt

er
 a

nd
 B

el
lw

et
he

r
St

ra
te

gy
.

D
T

is
 th

e
be

st
cl

as
si

fie
r w

ith
 F

1-
Sc

or
e

=
 3

3%

co
ns

id
er

in
g

B
el

lw
et

he
r s

tra
te

gy
Tr

av
is

To
rr

en
t

D
T,

 G
ra

di
en

t B
oo

st-
in

g
(G

B
) ,

 R
F,

 L
R

,
K

N
N

, N
B

X
ia

 e
t a

l.
(2

01
7a

)

Th
e

au
th

or
s a

da
pt

ed
 A

D
A

 a
lg

or
ith

m
 to

 p
re

di
ct

C

I b
ui

ld
 fa

ilu
re

 a
nd

 c
om

pa
re

d
th

is
 a

pp
ro

ac
h

to

N
B

 a
nd

 D
T.

 T
he

 c
on

si
de

re
d

sc
en

ar
io

 w
as

 n
ot

m

en
tio

ne
d.

Th
e

pr
ed

ic
tio

n
ac

hi
ev

ed
 a

 sc
or

e
of

 7
4%

 in
 te

rm
s o

f
ac

cu
ra

cy
. A

D
A

 w
as

 th
e

be
st

pe
rfo

rm
er

.
Tr

av
is

To
rr

en
t

A
D

A
, D

T
an

d
N

B
N

i a
nd

 L
i (

20
17

)

Th
e

au
th

or
s u

se
d

9
cl

as
si

fie
rs

 to
 c

on
str

uc
t p

re
di

c-
tio

n
m

od
el

s a
nd

 in
ve

sti
ga

te
d

th
e

pe
rfo

rm
an

ce
 o

f
bo

th
 c

ro
ss

-v
al

id
at

io
n

an
d

on
lin

e
pr

ed
ic

tio
ns

.

Th
e

pr
ed

ic
tio

n
pe

rfo
rm

an
ce

 in
 c

ro
ss

 v
al

id
at

io
n

sc
en

ar
io

 a
ch

ie
ve

d
55

%
 in

 te
rm

s o
f F

1
in

 m
ed

ia
n.

W

he
n

it
co

m
es

 to
 o

nl
in

e
sc

en
ar

io
, t

he
 p

re
di

ct
io

n
pe

rfo
rm

an
ce

 fa
lls

 to
 3

0%
. I

n
bo

th
 sc

en
ar

io
s,

D
T

an
d

R
F

sh
ow

ed
 th

e
be

st
pe

rfo
rm

an
ce

.

Tr
av

is
To

rr
en

t
9

M
L

cl
as

si
fie

rs

in
cl

ud
in

g
D

T,
 R

F
et

c.

X
ia

 a
nd

 L
i (

20
17

)

Th
e

au
th

or
s c

om
pa

re
d

4
M

L
m

od
el

s c
on

si
de

rin
g

10
-c

ro
ss

 v
al

id
at

io
n.

SV
M

 a
nd

 L
R

 h
av

e
th

e
hi

gh
es

t a
ve

ra
ge

 p
re

di
ct

io
n

ac
cu

ra
cy

 o
f 8

8%
Tr

av
is

To
rr

en
t

SV
M

 +
D

T+
R

F+
LR

Lu
o

et
 a

l.
(2

01
7)

Th
e

id
ea

 is
 to

 sp
lit

 th
e

da
ta

 b
as

ed
 o

n
th

e
bu

ild

sy
ste

m
s (

A
nt

, M
av

en
, a

nd
 G

ra
dl

e)
 a

nd
 th

en

pe
rfo

rm
 c

ro
ss

-p
ro

je
ct

 a
nd

 c
ro

ss
-v

al
id

at
io

n
ba

se
d

pr
ed

ic
tio

ns
.

C
ro

ss
-v

al
id

at
io

n
sc

en
ar

io
 p

ro
vi

de
d

be
tte

r r
es

ul
ts

w

ith
 a

n
av

er
ag

e
F-

M
ea

su
re

 sc
or

e
of

 9
2%

 c
om

-
pa

re
d

to
 8

7%
 a

ch
ie

ve
d

cr
os

s-
pr

oj
ec

ts
.

Tr
av

is
To

rr
en

t
R

F
H

as
sa

n
an

d
W

an
g

(2
01

7)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 41 of 61 21

less to occur than passed ones (Xie and Li 2018). In this paper, we found that when
applying RF to our generated dataset, our approach can achieve better results.

Xia et al. (2017a) conducted an empirical study to evaluate the predictive per-
formance of six common ML models including RF and DT considering cross-pro-
ject validation. For dataset selection, they compared three methods namely Ran-
dom Selection, Burak Filter based on build-level and Bellwether Strategy based on
project-level. According to the results of their experiments, they found that Bell-
wether strategy performs better than the two other methods. And among the used
models, they found that DT classifier performs the best achieving a score of 17% for
F1-score on average.

Luo et al. (2017) have used the features of TravisTorrent dataset to predict the
result of a build. Additionally, they compared Support Vector Machine (SVM), DT,
RF and Logistic Regression (LR). Based on 10-fold cross-validation, the results
reveal that LR and SVM were the best performers.

Although these research efforts have advocated that predicting CI build failures
is possible, these works achieved a limited prediction accuracy that is sometimes
comparable to the performance of random guessing (Xia et al. 2017a). Another main
issue to classic ML-based approaches is related to the imbalanced distribution of
build results. This challenges their applicability due to the performance bias that
can occur when an imbalanced distribution of class examples is used (Saidani et al.
2020). Furthermore, this imbalanced nature of the training data was rarely discussed
in existing works. However, in CI context, a good accuracy on the failed builds pre-
diction is more important than the passed builds accuracy. The existence of these
issues suggest that the build failure prediction problem is not yet resolved. In our
paper, we showed that the usage of DL-CIBuild, the DL-based approach, can effec-
tively predict the CI build failure while considering the imbalance nature of the data.

7.2 Analysis of CI builds

The analysis of build failure is a growing topic as many research works (Beller et al.
2017; Luo et al. 2017) attempted to discover the reasons behind build breakage that
are related mainly to the development activities. Other studies investigated the tem-
poral trends of CI builds and investigated the link between the current build and pre-
vious ones. In particular, Rausch et al. (2017) observed by analyzing the build logs
that for 10 selected projects using Travis-CI, that more than 50% (up to 80%) of all
failed builds follow a previous build failure. That is, if the build failed, the next build
is more likely to fail as well. Ni and Li (2017) also found that features linked to
the last build such as previous build result can be effective in predicting the current
build outcome. These results lend support to our findings as our study shows that
the sequence of build results is a strong predictor for future failures. Atchison et al.
(2017) also observed a clear seasonality in build activity, as their approach was able
to estimate the number of builds to be generated in the future, with an average accu-
racy of 86%. However, that study did not investigate how the build outcome evolves
over time, nether it estimated the build results. Ghaleb et al. (2019b) revealed that
some builds may break while generating the build. Such kinds of build breakages

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 42 of 61

introduce noises to build breakage data. Particularly, they found that 33% of the
Travis CI build failures are due to environmental factors, 29% are due to errors in
previous builds, and 9% are due to build jobs that were later deemed by developers
as noisy. Gallaba et al. (2018) also found that CI builds are noisy.

Despite this much research, the reasons behind the build failure is still ambigu-
ous. The findings of our paper encourage researchers to analyse further the perio-
dicity of CI builds that may be linked to other software engineering activities e.g.
release preparation.

7.3 Application of optimization techniques to ML/DL algorithms

Very often a learning algorithm performance can be significantly improved through
the optimization of its parameters selection (Tantithamthavorn et al. 2018a). Hyper-
parameter tuning can be interpreted as an optimization problem where the objec-
tive is to find a configuration that optimizes an objective (e.g. minimize the loss
function).

Grid Search(GS) is widely used method for HPO (Bergstra et al. 2011). This
approach consists of trying all possible combinations of an existing set of param-
eters. However, with the growing complexity of the search space due to the increase
of parameters and their possible values, GS becomes a non practical choice for con-
figuring complex learning algorithms (Yang and Shami 2020).

Random Search (RS) was proposed by Bergstra and Bengio (2012) to overcome
certain limitations of GS. Instead of testing all possible combinations in the search
space, RS randomly selects the candidate hyper-parameter values. . In (Bergstra
and Bengio 2012), the authors showed that RS is more efficient than RS for tuning
neural networks. However, RS may involve many unnecessary evaluations, which
decrease its efficiency (Bergstra and Bengio 2012).

Bayesian Optimization (BO) (Snoek et al. 2012) is an iterative algorithm that,
unlike GS and RS, determines the future evaluation points based on the previously-
obtained results. One of the most commonly used BO-based methods is Tree-struc-
tured Parzen estimator (TPE) (Bergstra et al. 2011) which has proved its effec-
tiveness. For instance, by tuning XGBoost, Xia et al. (2017b) have found that TPE
performs significantly better than RS, GS and manual search in terms of accuracy
but requires more time due to the additional computational costs related to the crea-
tion of Parzen estimators. Guo et al. (2019) have also found that TPE is better than
RS in terms of accuracy and precision.

Bayesian Optimization HyperBand (BOHB) (Falkner et al. 2018) is a recent
approach (in 2018) that combines Bayesian optimization and HyperBand (Li et al.
2017) by replacing HyperBand’s random search by TPE. Recently, Haris et al.
(2021) have shown that this approach is better than TPE and HyperBand for tuning
deep learning.

To solve complex and large search space problems, meta-heuristics, including
Genetic algorithms (GAs) and Particle Swarm Optimization (PSO), are the most
prevalent (Yang and Shami 2020). For instance, Lorenzo et al. (2017) found that
PSO improves the performance of RS and GS. The same conclusion was dropped

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 43 of 61 21

by Tharwat and Hassanien (2019). Wicaksono and Supianto (2018) have shown that
GA is better than GS to tune Support Vector Machine (SVM), Random Forest (RF),
Adaptive Boosting (AdaBoost) and K-Nearest Neighbour (KNN). Di Martino et al.
(2011) also used GA to configure SVM models.

There exist other HPO methods that were described in detail in Yang and Shami
(2020) review. In our paper, we showed that GA is the most suitable, in terms of
AUC and time, HPO technique when applied to LSTM in the context of CI build
failure.

8 Threats to validity

This section describes the threats to the validity of our experiments.
Internal validity is related to the relationship between treatment and outcome. In

this paper, it concerns our selection of subject systems, methods and tools. A threat
to internal validity could be related to the stream of the selected projects data. When
most of the build failures occur early during the project growth phase, there is little
added value in exploring their data later in the life-cycle (Shrikanth et al. 2020). To
address this issue, we have double-checked each project data stream by computing
the number of failed builds in each studied month. We have found that the build
failure is well distributed among all the studied periods. We cannot also generalize
our findings to other projects as they may have different temporal stream patterns.
We also considered two validation scenarios: Online validation which is a realis-
tic scenario as it considers the chronological order of CI builds and mimics what
happens during the CI process. The second scenario we considered is cross-project
which was used to assess the generalizability of our approach based on the Bell-
wether strategy. Future work is planned to validate our approach considering other
scenarios/strategies. Another potential threat is related to the selected performance
metrics. We basically used standard performance metrics namely F1-score, accu-
racy and AUC that are widely accepted in predictive models in software engineer-
ing (Hastie et al. 2009). On the other hand, the variation of metrics also strengthens
the generalization of our results as our findings are not based on one specific met-
ric. Another potential threat could be related to the selection of the prediction tech-
niques. We have investigated existing papers related to the prediction of CI builds,
and we have adapted their algorithms in our comparative study (Xia et al. 2017a;
Ni and Li 2017; Xia and Li 2017; Luo et al. 2017; Hassan and Wang 2017). We
replicated their models based on their descriptions, and we have used our dataset as
a baseline to compare all approaches. It is important to point out that these models
were tuned to use the set of features that are available with respect to the projects we
use in our experiments. These ML techniques were used in previous CI and AI for
software engineering research (Abdalkareem et al. 2020; Ghotra et al. 2015; Tan-
tithamthavorn et al. 2018b). Nevertheless, we plan as part of our future work to con-
duct a large-scale empirical study with other techniques. Another threat comes from
our choice of HPO methods. We compared GA against methods that are often seen
in literature and implemented in Python frameworks/libraries. But even with all that,
we have not explored all the existing HPO methods. To some extent, that is because

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 44 of 61

no single paper can explore all algorithms. But also, sometimes we choose not to
explore certain algorithms since they are out-of-scope for this study.

It would be also interesting to compare the performance of the Threshold Mov-
ing against other sampling techniques like MAHAKIL (Bennin et al. 2017) or SMO-
TUNED (Agrawal and Menzies 2018), which would be an interesting future work

Construct validity refers to the extent to which the experiment setting reflects
the theory. The first threat to construct validity is randomness that may introduce
bias. To mitigate this threat, we performed 31 runs of each algorithm and considered
the median value in each validation iteration and applied statistical tests to remove
spurious distinctions. As for the used features to feed ML techniques, we used stand-
ard features from TravisTorrent dataset that commonly used in the literature (Xia
et al. 2017a; Ni and Li 2018; Xia and Li 2017; Luo et al. 2017; Hassan and Wang
2017; Ni and Li 2018; Santolucito et al. 2018). We plan to extend these features
in an attempt to see their impact on the prediction performance. Additionally, the
hyper-parameters search space could introduce some bias in our results as consider-
ing different ranges/parameters may yield different results. However, the exploration
of the parameter space of automated HPO methods may require a considerable com-
putational cost. Thus, future replication of this work should explore other ranges/
parameters and their impacts on the predictive performance. Another threat to con-
struct validity is related to the setting of RQ5 to detect the concept drift since defin-
ing another validation scenario could lead to different results. Further experiments
are required to confirm/refute the existence of concept drift in CI builds. Another
threat to construct validity could be related to the annotated set of builds as in our
dataset, the build results are noisy (Ghaleb et al. 2019b; Gallaba et al. 2018). While
according to our knowledge, TravisTorrent is the only available dataset of CI builds,
a future work based on clean build breakage dataset is required.

Conclusion validityaffects the ability to draw correct conclusions about the rela-
tionship between treatment and outcome. We have carefully chosen non-parametric
tests, namely Wilcoxon and Cliff’s delta, in the study as they do not require data
normality assumptions (Malhotra and Khanna 2017). The suitability of the used sta-
tistical non-parametric methods with data ordinality, along with no assumption on
their distribution raises our confidence about the significance of the analyzed sta-
tistical relationships. Moreover, to increase the confidence in the study results, we
used three widely-acknowledged prediction performance measures, i.e., F1-score,
accuracy and AUC to evaluate the obtained results from the considered algorithms.

External validity concerns the possibility to generalize our results. Our experi-
mental results might have concerns of generalizability, since we performed the
experiments with ten open source projects that use TravisTorrent as their CI host
tool. While TravisTorrent is one most popular cloud-based platforms for providing
CI services to software projects, our results could not be generalized to other CI
tools and other open-source or industrial projects. As future work, we plan to extend
our study on other open source and industrial projects as well as other CI tools. We
also plan to provide our approach as bot to be integrated into code review and CI
tools to help developers predicting their build failure risks.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 45 of 61 21

Reliability validity concerns the possibility of replicating this study. All the stud-
ies projects are publicly available. Moreover, the Python implementation of our
approach is provided in our replication package https:// github. com/ stilab- ets/ DL-
CIBui ld.

9 Conclusion

In this paper, we introduced DL-CIBuild a two-phase framework for CI build failure
prediction. In the first phase, we implement LSTM model based on the temporal
information of build results. Then, we use Genetic Algorithm (GA) for tuning the
model hyper-parameters. To evaluate the effectiveness of our approach, we conduct
an empirical study on ten open-source projects that use the popular CI host system,
Travis CI, with a total of 91,330 builds. In summary, the empirical study results
show that (i) when compared to other methods for automated parameters tuning, GA
can provide better configurations, (ii) under online-validation, our approach achieves
a reasonable and better performance than the five Machine Learning techniques in
terms of AUC, F1-score and accuracy (iii) when it comes to cross-project validation,
DL-CIBuild has shown a good effectiveness to learn from cross-project training
corpus which means that our approach is readily applicable to both within-project
and cross-project predictions and (iii) the sensitivity check results reveal that our
solution is more robust than ML techniques across varying the training set size and
the predictive performance is estimated to be enhanced with larger base of CI build
results.

DL-CIBuild represents an interesting case study on the effectiveness of deep
learning LSTM for CI build failures prediction. As future works, we envision to
improve the performance of our approach by considering other prominent aspects
and perform the experiments on more projects. This can help developers and
researcher get more insights on the CI build failures problem, as the next generation
of software defects, and gain actionable information to improve the practice of CI in
software projects. Moreover, we plan to implement a bot based on DL-CIBuild and
conduct a user study with our industrial partner to better evaluate our approach in an
industrial setting. Additionally, the tool can allow updating the trained model with
more data when the performance degrades below a certain threshold; which could
be configured by the tool users.

A optimal parameters for online validation (RQ1 and RQ2)

See Table 14.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 46 of 61

Ta
bl

e
14

O

pt
im

al
 P

ar
am

et
er

s f
or

 R
Q

1
an

d
R

Q
2

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

dr
op

_p
ro

ba
nb

_l
ay

er
s

nb
_u

ni
ts

O
pt

im
iz

er

cl
ou

di
fy

1
7

38
38

0.
11

3
72

ad
am

2
6

26
36

0.
07

3
50

rm
sp

ro
p

3
7

14
36

0.
02

2
94

ad
am

4
7

22
44

0.
12

3
76

ad
am

5
7

23
60

0.
03

3
64

ad
am

gr
ay

lo
g2

-s
er

ve
r

1
7

27
31

0.
06

2
44

ad
am

2
6

16
54

0.
19

4
76

ad
am

3
7

64
39

0.
05

2
52

rm
sp

ro
p

4
4

22
33

0.
16

2
54

ad
am

5
4

24
39

0.
05

4
63

rm
sp

ro
p

ja
ck

ra
bb

it-
oa

k
1

7
14

34
0.

12
4

60
ad

am
2

7
45

36
0.

14
2

92
ad

am
3

7
11

30
0.

16
4

72
ad

am
4

7
14

45
0.

18
2

57
rm

sp
ro

p
5

7
15

49
0.

15
3

94
ad

am
jru

by
1

7
21

38
0.

12
2

47
ad

am
2

6
22

48
0.

08
2

52
ad

am
3

6
5

30
0.

05
4

49
ad

am
4

5
12

31
0.

05
2

82
ad

am
5

6
16

40
0.

06
4

39
rm

sp
ro

p
m

et
as

pl
oi

t-f
ra

m
ew

or
k

1
5

52
56

0.
19

2
96

rm
sp

ro
p

2
6

24
50

0.
15

2
45

ad
am

3
4

16
45

0.
19

2
61

rm
sp

ro
p

4
5

16
49

0.
04

2
79

rm
sp

ro
p

5
6

56
34

0.
07

3
53

ad
am

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 47 of 61 21

Ta
bl

e
14

 (
co

nt
in

ue
d)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

dr
op

_p
ro

ba
nb

_l
ay

er
s

nb
_u

ni
ts

O
pt

im
iz

er

op
en

-b
ui

ld
-s

er
vi

ce
1

6
28

32
0.

07
2

68
ad

am

2
5

52
33

0.
03

3
78

rm
sp

ro
p

3
5

63
42

0.
08

2
92

ad
am

4
6

13
39

0.
07

3
95

ad
am

5
6

26
31

0.
10

2
40

ad
am

op
en

pr
oj

ec
t

1
7

12
37

0.
14

2
94

ad
am

2
7

30
40

0.
16

2
65

rm
sp

ro
p

3
5

20
60

0.
13

4
46

rm
sp

ro
p

4
5

18
35

0.
13

2
45

ad
am

5
7

28
38

0.
11

3
46

ad
am

ra
ils

1
5

58
36

0.
05

2
45

ad
am

2
7

49
33

0.
20

3
67

rm
sp

ro
p

3
5

43
47

0.
11

3
68

rm
sp

ro
p

4
6

63
50

0.
14

3
68

ad
am

5
4

62
55

0.
11

3
55

ad
am

ru
by

1
6

22
38

0.
08

2
82

ad
am

2
7

10
48

0.
05

4
83

ad
am

3
7

26
58

0.
18

3
67

ad
am

4
6

55
50

0.
06

3
73

ad
am

5
4

4
30

0.
06

4
48

ad
am

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 48 of 61

Ta
bl

e
14

 (
co

nt
in

ue
d)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

dr
op

_p
ro

ba
nb

_l
ay

er
s

nb
_u

ni
ts

O
pt

im
iz

er

so
na

rq
ub

e
1

6
7

55
0.

06
4

79
rm

sp
ro

p
2

6
8

51
0.

18
4

87
rm

sp
ro

p
3

5
4

31
0.

01
2

58
rm

sp
ro

p
4

6
16

51
0.

02
2

86
rm

sp
ro

p
5

5
43

43
0.

12
2

90
ad

am

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 49 of 61 21

B optimal parameters for cross‑project validation (RQ3)

See Table 15.

C optimal parameters for RQ4

See Table 16.

Table 15 Optimal Parameters
for cross-project validation
(Jruby is the training project)

Parameter Optimal value

nb_epochs 5
nb_batch 16
time_step 60
drop_proba 0.2
nb_layers 4
nb_units 32
optimizer “adam”

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 50 of 61

Ta
bl

e
16

O

pt
im

al
 P

ar
am

et
er

s f
or

 R
Q

4

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

dr
op

_p
ro

ba
nb

_l
ay

er
s

nb
_u

ni
ts

O
pt

im
iz

er

cl
ou

di
fy

1
4

42
58

0.
11

2
81

ad
am

2
6

10
50

0.
11

3
76

ad
am

3
3

5
46

0.
02

3
72

ad
am

gr
ay

lo
g2

-s
er

ve
r

1
5

45
46

0.
16

2
60

ad
am

2
5

45
49

0.
06

2
91

ad
am

3
4

17
35

0.
08

2
86

ad
am

ja
ck

ra
bb

it-
oa

k
1

6
25

59
0.

20
2

76
ad

am
2

2
29

52
0.

02
3

90
ad

am
3

5
62

55
0.

09
2

73
ad

am
jru

by
1

3
44

45
0.

07
2

74
ad

am
2

5
20

53
0.

14
2

69
ad

am
3

5
23

42
0.

04
2

81
ad

am
m

et
as

pl
oi

t-f
ra

m
ew

or
k

1
4

5
55

0.
06

3
33

ad
am

2
5

24
46

0.
09

3
34

ad
am

3
5

34
31

0.
01

2
40

ad
am

op
en

-b
ui

ld
-s

er
vi

ce
1

4
34

30
0.

16
2

37
ad

am
2

6
54

56
0.

14
2

73
ad

am
3

6
54

54
0.

19
3

78
ad

am
op

en
pr

oj
ec

t
1

2
17

50
0.

07
2

70
ad

am
2

6
36

37
0.

06
2

84
ad

am
3

4
57

53
0.

02
2

42
ad

am
ra

ils
1

4
5

59
0.

03
2

38
ad

am
2

3
11

53
0.

14
2

51
ad

am
3

5
49

38
0.

11
3

61
ad

am

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 51 of 61 21

Ta
bl

e
16

 (
co

nt
in

ue
d)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

dr
op

_p
ro

ba
nb

_l
ay

er
s

nb
_u

ni
ts

O
pt

im
iz

er

ru
by

1
3

55
50

0.
09

3
88

ad
am

2
3

35
37

0.
15

2
66

ad
am

3
5

32
41

0.
03

3
86

ad
am

so
na

rq
ub

e
1

5
18

48
0.

07
3

62
ad

am
2

4
15

52
0.

19
3

48
ad

am
3

3
45

59
0.

18
3

74
ad

am

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 52 of 61

O
pt

im
al

 p
ar

am
et

er
s

fo
r R

Q
5

Se
e

Ta
bl

es
 1

7
an

d
18

.

Ta
bl

e
17

O

pt
im

al
 P

ar
am

et
er

s f
or

 R
Q

5
(o

ld
 d

at
a)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

nb
_u

ni
ts

O
pt

im
iz

er
dr

op
_p

ro
ba

nb
_l

ay
er

s

cl
ou

di
fy

1
6

4
41

32
rm

sp
ro

p
0.

15
4

2
5

4
37

32
rm

sp
ro

p
0.

17
3

3
5

16
44

32
ad

am
0.

07
1

4
5

16
33

32
ad

am
0.

03
2

gr
ay

lo
g2

-s
er

ve
r

1
4

32
31

32
rm

sp
ro

p
0.

03
1

2
5

32
48

32
ad

am
0.

19
1

3
6

8
59

32
rm

sp
ro

p
0.

09
1

4
6

16
50

32
rm

sp
ro

p
0.

03
3

ja
ck

ra
bb

it-
oa

k
1

4
4

32
32

rm
sp

ro
p

0.
03

4
2

5
32

55
32

rm
sp

ro
p

0.
1

4
3

6
8

44
32

ad
am

0.
12

4
4

4
8

57
32

ad
am

0.
19

3
jru

by
1

6
4

44
32

ad
am

0.
05

2
2

5
32

42
32

ad
am

0.
06

4
3

5
4

49
32

ad
am

0.
07

4
4

6
32

45
32

ad
am

0.
2

3
m

et
as

pl
oi

t-f
ra

m
ew

or
k

1
5

8
59

32
ad

am
0.

1
1

2
4

4
30

32
ad

am
0.

04
1

3
6

16
60

32
rm

sp
ro

p
0.

07
1

4
6

32
46

32
rm

sp
ro

p
0.

17
1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 53 of 61 21

Ta
bl

e
17

 (
co

nt
in

ue
d)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

nb
_u

ni
ts

O
pt

im
iz

er
dr

op
_p

ro
ba

nb
_l

ay
er

s

op
en

-b
ui

ld
-s

er
vi

ce
1

4
8

54
32

ad
am

0.
02

1
2

6
4

33
32

rm
sp

ro
p

0.
17

3
3

4
8

37
32

rm
sp

ro
p

0.
07

1
4

6
8

42
32

rm
sp

ro
p

0.
06

3
op

en
pr

oj
ec

t
1

6
8

54
32

rm
sp

ro
p

0.
08

1

2
4

16
35

32
rm

sp
ro

p
0.

1
2

3
6

16
36

32
rm

sp
ro

p
0.

07
1

4
6

8
57

32
rm

sp
ro

p
0.

11
4

ra
ils

1
6

16
59

32
ad

am
0.

14
4

2
6

4
51

32
ad

am
0.

16
4

3
5

8
35

32
ad

am
0.

01
4

4
6

8
38

32
ad

am
0.

01
4

ru
by

1
5

4
51

32
ad

am
0.

19
1

2
5

4
39

32
rm

sp
ro

p
0.

09
4

3
5

4
42

32
rm

sp
ro

p
0.

2
3

4
5

8
53

32
ad

am
0.

14
2

so
na

rq
ub

e
1

6
32

39
32

rm
sp

ro
p

0.
1

1
2

6
16

32
32

ad
am

0.
14

1
3

6
32

48
32

rm
sp

ro
p

0.
04

3
4

6
4

56
32

rm
sp

ro
p

0.
1

1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 54 of 61

Ta
bl

e
18

O

pt
im

al
 P

ar
am

et
er

s f
or

 R
Q

5
(r

ec
en

t d
at

a)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

nb
_u

ni
ts

O
pt

im
iz

er
dr

op
_p

ro
ba

nb
_l

ay
er

s

cl
ou

di
fy

1
5

8
52

32
rm

sp
ro

p
0.

1
1

2
4

8
38

32
ad

am
0.

19
4

3
5

32
45

32
rm

sp
ro

p
0.

04
1

4
4

4
41

32
rm

sp
ro

p
0.

17
4

gr
ay

lo
g2

-s
er

ve
r

1
5

8
60

32
ad

am
0.

05
2

2
6

4
39

32
ad

am
0.

09
2

3
5

16
32

32
ad

am
0.

11
1

4
5

8
60

32
ad

am
0.

05
2

ja
ck

ra
bb

it-
oa

k
1

4
32

43
32

rm
sp

ro
p

0.
2

1
2

4
16

51
32

ad
am

0.
02

4
3

4
32

43
32

rm
sp

ro
p

0.
2

1
4

4
16

51
32

ad
am

0.
02

4
jru

by
1

4
8

43
32

ad
am

0.
1

2
2

6
8

59
32

ad
am

0.
17

4
3

5
4

30
32

ad
am

0.
04

2
4

4
8

43
32

ad
am

0.
1

2
m

et
as

pl
oi

t-f
ra

m
ew

or
k

1
6

8
52

32
rm

sp
ro

p
0.

1
2

2
4

4
37

32
rm

sp
ro

p
0.

02
1

3
6

4
41

32
rm

sp
ro

p
0.

14
3

4
4

32
54

32
rm

sp
ro

p
0.

19
2

op
en

-b
ui

ld
-s

er
vi

ce
1

4
4

32
32

rm
sp

ro
p

0.
13

3
2

6
32

35
32

ad
am

0.
15

4
3

4
4

32
32

rm
sp

ro
p

0.
13

3
4

6
64

38
32

rm
sp

ro
p

0.
19

2

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 55 of 61 21

Ta
bl

e
18

 (
co

nt
in

ue
d)

Pr
oj

ec
t

Ex
pe

rim
en

t
nb

_e
po

ch
s

nb
_b

at
ch

tim
e_

ste
p

nb
_u

ni
ts

O
pt

im
iz

er
dr

op
_p

ro
ba

nb
_l

ay
er

s

op
en

pr
oj

ec
t

1
6

8
45

32
ad

am
0.

1
1

2
6

16
47

32
rm

sp
ro

p
0.

03
3

3
6

32
37

32
ad

am
0.

04
2

4
6

32
37

32
ad

am
0.

04
2

ra
ils

1
4

16
32

32
ad

am
0.

03
2

2
6

32
31

32
rm

sp
ro

p
0.

02
4

3
6

32
31

32
rm

sp
ro

p
0.

02
4

4
4

16
32

32
ad

am
0.

03
2

ru
by

1
4

8
51

32
rm

sp
ro

p
0.

2
3

2
6

32
33

32
rm

sp
ro

p
0.

14
3

3
5

4
46

32
rm

sp
ro

p
0.

02
1

4
4

8
51

32
rm

sp
ro

p
0.

2
3

so
na

rq
ub

e
1

5
16

42
32

rm
sp

ro
p

0.
03

1
2

6
8

30
32

rm
sp

ro
p

0.
18

4
3

5
8

42
32

ad
am

0.
18

4
4

5
16

42
32

rm
sp

ro
p

0.
03

1

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 56 of 61

Acknowledgements This work has been supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), Discovery Grant RGPIN-2018-05960.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Abdalkareem, R., Mujahid, S., Shihab, E.: A machine learning approach to improve the detection of ci
skip commits. IEEE Trans. Softw. Eng., (2020)

Agrawal, A., Menzies, T.: Is" better data" better than" better data miners"? In: 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 1050–1061 (2018)

Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: 2011 33rd International Conference on Software Engineering (ICSE).
IEEE, 1–10 (2011)

Atchison, Abigail, Berardi, Christina, Best, Natalie, Stevens, Elizabeth, Linstead, Erik: A time series
analysis of travistorrent builds: to everything there is a season. In IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 463–466. IEEE (2017)

Athiwaratkun, Ben, Stokes, Jack W.: Malware classification with lstm and gru language models and a
character-level cnn. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2482–2486 (2017)

Beller, M., Gousios, G., Zaidman, A.: Oops, my tests broke the build: An explorative analysis of travis ci
with github. In: IEEE/ACM International Conference on Mining Software Repositories 356–367,
(2017)

Beller, M., Gousios, G., Zaidman, A.: Travistorrent: Synthesizing travis ci and github for full-stack
research on continuous integration. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), 447–450 (2017)

Bergstra, James, Bengio, Yoshua: Random search for hyper-parameter optimization. J. Mach. Learn. Res.
13(Feb), 281–305 (2012)

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: 25th
annual conference on neural information processing systems (NIPS 2011), volume 24. Neural
Information Processing Systems Foundation, (2011)

Bhowan, Urvesh, Johnston, Mark, Zhang, Mengjie, Yao, Xin: Reusing genetic programming for ensemble
selection in classification of unbalanced data. IEEE Trans. Evolut. Comput. 18(6), 893–908 (2013)

Bhowan, Urvesh, Johnston, Mark, Zhang, Mengjie: Evolving ensembles in multi-objective genetic pro-
gramming for classification with unbalanced data. In Annual conference on Genetic and evolution-
ary computation (GECCO), 1331–1338, (2011)

Bhowan, Urvesh, Zhang, Mengjie, Johnston, Mark: Genetic programming for classification with unbal-
anced data. In European Conference on Genetic Programming. Springer, 1–13 (2010)

Bhowan, U., Johnston, M., Zhang, M.: Differentiating between individual class performance in genetic
programming fitness for classification with unbalanced data. In: 2009 IEEE Congress on Evolu-
tionary Computation. IEEE, 2802–2809 (2009)

Bishop, C.M.: Pattern recognition and machine learning (information science and statistics). Springer-
Verlag New York, inc., Secaucus, NJ, USA, (2006))

Bouktif, Salah, Fiaz, Ali, Ouni, Ali, Adel Serhani, Mohamed: Multi-sequence lstm-rnn deep learning and
metaheuristics for electric load forecasting. Energies 13(2), 391 (2020)

Bouktif, Salah, Fiaz, Ali, Ouni, Ali, Serhani, Mohamed Adel: Optimal deep learning lstm model for
electric load forecasting using feature selection and genetic algorithm: Comparison with machine
learning approaches. Energies 11(7), 1636 (2018)

Breiman, Leo: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Buda, Mateusz, Maki, Atsuto, Mazurowski, Maciej A.: A systematic study of the class imbalance prob-

lem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 57 of 61 21

Cervantes, J., Li, X., Yu, W.: Using genetic algorithm to improve classification accuracy on imbalanced
data. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2659–
2664 (2013)

Chawla, Nitesh V., Bowyer, Kevin W., Hall, Lawrence O., Kegelmeyer, W Philip: Smote: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

Choetkiertikul, Morakot, Dam, Hoa Khanh, Tran, Truyen, Pham, Trang, Ghose, Aditya, Menzies, Tim: A
deep learning model for estimating story points. IEEE Trans. Softw. Eng. 45(7), 637–656 (2018)

Cliff, Norman: Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol. Bull. 114(3),
494 (1993)

colah’sblog. Understanding lstm networks. http:// colah. github. io/ posts/ 2015- 08- Under stand ing- LSTMs/,.
Accessed: 2020-03-01

Collell, Guillem, Prelec, Drazen, Patil, Kaustubh R.: A simple plug-in bagging ensemble based on thresh-
old-moving for classifying binary and multiclass imbalanced data. Neurocomputing 275, 330–340
(2018)

Cui, Yiming,Wang, Shijin, Li, Jianfeng: Lstm neural reordering feature for statistical machine translation.
arXiv preprint arXiv: 1512. 00177, (2015)

Dey, Rahul., Salemt, F.M.: Gate-variants of gated recurrent unit (gru) neural networks. In: 2017 IEEE
60th international midwest symposium on circuits and systems (MWSCAS). IEEE 1597–1600
(2017)

Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F.: A genetic algorithm to configure support vector
machines for predicting fault-prone components. In: International Conference on Product Focused
Software Process Improvement. Springer, Berlin, Heidelberg 247–261 (2011)

Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software quality and reducing
risk. Pearson Education, (2007)

Ebo Bennin, Kwabena, Keung, Jacky, Phannachitta, Passakorn, Monden, Akito, Mensah, Solomon:
Mahakil: Diversity based oversampling approach to alleviate the class imbalance issue in software
defect prediction. IEEE Trans. Softw. Eng. 44(6), 534–550 (2017)

Ekanayake, J., Tappolet, J., Gall, H.C., Bernstein, A.: Tracking concept drift of software projects using
defect prediction quality. In: 2009 6th IEEE International Working Conference on Mining Software
Repositories. IEEE, 51–60 (2009)

Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and efficient hyperparameter optimization at scale. In
International Conference on Machine Learning. PMLR, 1437–1446 (2018)

Fowler, Martin: Continuous integration. https:// www. marti nfowl er. com/ artic les/ conti nuous Integ ration.
html, (2006). Accessed: 2020-01-01

Gallaba, K., Macho, C., Pinzger, M., McIntosh, S.: Noise and heterogeneity in historical build data: an
empirical study of travis ci. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 87–97, (2018)

Ghaleb, T.A., Da Costa, D.A., Zou, Y.: An empirical study of the long duration of continuous integration
builds. Empir. Softw. Eng. 24(4), 1–38 (2019)

Ghaleb, T.A., da Costa, D.A., Zou, Y., Hassan, A.E.: Studying the impact of noises in build breakage
data. IEEE Trans. Softw. Eng., (2019b)

Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification techniques on the perfor-
mance of defect prediction models. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering 1, 789–800 (2015)

Goldberg, David E.: Genetic algorithms in search. Optimization, and Machine Learning, (1989)
Graves, Alex, Schmidhuber, Jürgen.: Framewise phoneme classification with bidirectional lstm and other

neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Graves, Alex, Jaitly, Navdeep, Mohamed, Abdel-rahman: Hybrid speech recognition with deep bidirec-

tional lstm. In: 2013 IEEE workshop on automatic speech recognition and understanding. IEEE
273–278 (2013)

Guo, Baosu, Jingwen, Hu., Wenwen, Wu., Peng, Qingjin, Fenghe, Wu.: The tabu_genetic algorithm: a
novel method for hyper-parameter optimization of learning algorithms. Electronics 8(5), 579
(2019)

Haris, Muhammad, Hasan, Muhammad Noman, Qin, Shiyin: Early and robust remaining useful life pre-
diction of supercapacitors using bohb optimized deep belief network. Appl. Energy 286, 116541
(2021)

Harman, Mark, Mansouri, S Afshin, Zhang, Yuanyuan: Search-based software engineering: Trends, tech-
niques and applications. ACM Comput. Surv. (CSUR) 45(1), 11 (2012)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 58 of 61

Harman, Mark, McMinn, Phil, De Souza, Jerffeson Teixeira, Yoo, Shin: Search based software engineer-
ing: Techniques, taxonomy, tutorial. In: Empirical software engineering and verification. Springer,
Heidelberg 1–59 (2010)

Hassan, F., Wang, X.: Change-aware build prediction model for stall avoidance in continuous integration.
In: ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
157–162 (2017)

Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome: The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, Berlin, Heidelberg (2009)

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D.:Trade-offs in continuous integration: assurance,
security, and flexibility. In: 11th Joint Meeting on Foundations of Software Engineering, 197–207.
ACM. (2017)

Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, costs, and benefits of continuous inte-
gration in open-source projects. In: 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016, 426–437, (2016)

Hochreiter, Sepp, Schmidhuber, Jürgen.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

Hochreiter, Sepp, Schmidhuber, Jürgen: Lstm can solve hard long time lag problems. In: Advances in
neural information processing systems, 473–479 (1997b)

Hpbandster. https:// automl. github. io/ HpBan dSter/ build/ html/ index. html,. Accessed: 2021-12-16
Hsu, Chih-Wei, Chang, Chih-Chung, Lin, Chih-Jen, et al.: A practical guide to support vector classifica-

tion, (2003)
Hyperopt framework. http:// hyper opt. github. io/ hyper opt/,. Accessed: 2021-12-16
jruby project. https:// github. com/ jruby/ jruby,. Accessed: 2021-12-16
Javier Ordóñez, Francisco, Roggen, Daniel: Deep convolutional and lstm recurrent neural networks for

multimodal wearable activity recognition. Sensors 16(1), 115 (2016)
Jebnoun, Hadhemi, Ben Braiek, Houssem, Masudur Rahman, Mohammad, Khomh, Foutse: The scent of

deep learning code: An empirical study. (2020)
Jelihovschi, Enio G., Faria, José Cláudio., Allaman, Ivan Bezerra: Scottknott: a package for performing

the scott-knott clustering algorithm in R. TEMA (São Carlos) 15(1), 3–17 (2014)
Karpathy, Andrej, Johnson, Justin, Fei-Fei, Li: Visualizing and understanding recurrent networks. arXiv

preprint arXiv: 1506. 02078, (2015)
Krawczyk, Bartosz, Woźniak, Michał: Cost-sensitive neural network with roc-based moving threshold for

imbalanced classification. In: International Conference on Intelligent Data Engineering and Auto-
mated Learning. Springer, Heidelberg 45–52 (2015)

Krishna, R., Menzies, T., Fu, W.: Too much automation? the bellwether effect and its implications for
transfer learning. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ACM 122–131 (2016)

Li, Hang, Gong, Xiu-Jun., Hua, Yu., Zhou, Chang: Deep neural network based predictions of protein
interactions using primary sequences. Molecules 23(8), 1923 (2018)

Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh, Afshin, Talwalkar, Ameet: Hyperband: A
novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–
6816 (2017)

Li, Yanxi, Dong, Minjing, Wang, Yunhe, Xu, Chang: Neural architecture search in a proxy validation loss
landscape. In: International Conference on Machine Learning. PMLR, 5853–5862 (2020)

Lorenzo, P.R., Nalepa, J., Kawulok, M., Ramos, L.S., Pastor, J.R.: Particle swarm optimization for hyper-
parameter selection in deep neural networks. In: Proceedings of the genetic and evolutionary com-
putation conference, 481–488, (2017)

Luo, Y., Zhao, Y., Ma, W., Chen, L.: What are the factors impacting build breakage?. In: 2017 14th Web
Information Systems and Applications Conference (WISA). IEEE, 139–142 (2017)

Längkvist, Martin, Karlsson, Lars, Loutfi, Amy: A review of unsupervised feature learning and deep
learning for time-series modeling. Patt. Recog. Lett. 42, 11–24 (2014)

Malhotra, Ruchika, Khanna, Megha: An exploratory study for software change prediction in object-ori-
ented systems using hybridized techniques. Auto. Softw. Eng. 24(3), 673–717 (2017)

Mkaouer, Wiem, Kessentini, Marouane, Shaout, Adnan, Koligheu, Patrice, Bechikh, Slim, Deb, Kalyan-
moy, Ouni, Ali: Many-objective software remodularization using nsga-iii. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 24(3), 17 (2015)

Ni, A., Li, M.: Cost-effective build outcome prediction using cascaded classifiers. In: International Con-
ference on Mining Software Repositories (MSR), 455–458 (2017)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 59 of 61 21

Ni, A., Li, M.: Poster: Acona: Active online model adaptation for predicting continuous integration build
failures. In: 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). IEEE, 366–367 (2018)

Optunity framework. https:// optun ity. readt hedocs. io/ en/ latest/,. Accessed: 2021-12-16
Ouni, Ali, Kessentini, Marouane, Sahraoui, Houari, Inoue, Katsuro, Deb, Kalyanmoy: Multi-criteria code

refactoring using search-based software engineering: An industrial case study. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 25(3), 23 (2016)

Pascanu, Razvan, Mikolov, Tomas, Bengio, Yoshua: On the difficulty of training recurrent neural net-
works. In: International conference on machine learning, 1310–1318, (2013)

Provost, F.: Machine learning from imbalanced data sets 101. In: Proceedings of the AAAI’2000 work-
shop on imbalanced data sets, Vol. 68, No. 2000, pp. 1-3. AAAI Press (2000)

Rausch, T., Hummer, W., Leitner, P., Schulte, S.: An empirical analysis of build failures in the continu-
ous integration workflows of java-based open-source software. In: Proceedings of the 14th interna-
tional conference on mining software repositories. IEEE Press, 345–355 (2017)

Replication package for ci build prediction. Available at : https:// github. com/ stilab- ets/ DL- CIBui ld,
(2020)

Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J.: Appropriate statistics for ordinal level data:
Should we really be using t-test and cohen’sd for evaluating group differences on the nsse and other
surveys. In: annual meeting of the Florida Association of Institutional Research, 1–33, (2006)

Ross Quinlan, J.: C4. 5: A programs for machine learning. Elsevier, Amsterdam (2014)
Saidani, Islem, Ouni, Ali, Mkaouer, Mohamed Wiem, Palomba, Fabio: On the impact of continuous inte-

gration on refactoring practice: An exploratory study on travistorrent. Inf. Softw. Technol. 138,
106618 (2021)

Saidani, I., Ouni, A., Mkaouer, W.: Detecting skipped commits in continuous integration using multi-
objective evolutionary search. IEEE Trans. Softw. Eng. (2022)

Saidani, I., Ouni, A., Chouchen, M., Mkaouer, M.W.: Predicting continuous integration build failures
using evolutionary search. J. Inf. Soft. Technol. 128, (2020)

Saidani, I., Ouni, A., Chouchen, M., Mkaouer, M.W.: Bf-detector: an automated tool for ci build failure
detection. In: 29th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, 1530–1534 (2021b)

Santolucito, M., Zhang, J., Zhai, E., Piskac, R.: Statically verifying continuous integration configurations.
Technical Report, (2018)

Schapire, Robert E.: Explaining adaboost. In: Empirical inference. Springer, Heidelberg 37–52 (2013)
Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.C.: Deep crossing: Web-scale modeling without

manually crafted combinatorial features. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 255–262 (2016)

Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: International conference
on evolutionary programming. Springer, Berlin 591–600 (1998)

Shrikanth, NC., Majumder, S., Menzies, T.: Early life cycle software defect prediction. why? how? arXiv
preprint arXiv: 2011. 13071, (2020)

Singh, A., Walenstein, A., Lakhotia, A.: Tracking concept drift in malware families. In: Proceedings of
the 5th ACM workshop on Security and artificial intelligence. 81–92, (2012)

Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms.
arXiv preprint arXiv: 1206. 2944, (2012)

Sundermeyer, Martin, Schlüter, Ralf, Ney, Hermann: Lstm neural networks for language modeling. In:
Thirteenth annual conference of the international speech communication association, (2012)

Sundsøy, Pål , Bjelland, Johannes, Reme, Bjørn-Atle, Iqbal, Asif M., Jahani, Eaman: Deep learning
applied to mobile phone data for individual income classification. In Proceedings of the 2016
International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thai-
land, 24–25 (2016)

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans. Softw. Eng. 43(1), 1–18 (2017)

Tantithamthavorn, Chakkrit, McIntosh, Shane, Hassan, Ahmed E., Matsumoto, Kenichi: The impact of
automated parameter optimization on defect prediction models. IEEE Trans. Softw. Eng. 45(7),
683–711 (2018)

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: The impact of automated parameter
optimization for defect prediction models. IEEE Trans. Softw. Eng. 45(7), 683–711 (2018)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Automated Software Engineering (2022) 29:21

1 3

21 Page 60 of 61

Tharwat, Alaa, Hassanien, Aboul Ella: Quantum-behaved particle swarm optimization for parameter opti-
mization of support vector machine. J. Classif. 36(3), 576–598 (2019)

Travis ci. https:// travis- ci. org/. Accessed: 2021-12-16
Tsymbal, Alexey: The problem of concept drift: definitions and related work. Comput. Sci. Depart., Trin-

ity Coll. Dublin 106(2), 58 (2004)
Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity outcomes relating to

continuous integration in github. In: 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, 805–816, (2015)

Wang, Yequan, Huang, Minlie, Zhu, Xiaoyan, Zhao, Li: Attention-based lstm for aspect-level sentiment
classification. In: Proceedings of the 2016 conference on empirical methods in natural language
processing, 606–615, (2016)

Wicaksono, Ananto Setyo, Supianto, Ahmad Afif: Hyper parameter optimization using genetic algorithm
on machine learning methods for online news popularity prediction. Int. J. Adv. Comput. Sci. Appl
9(12), 263–267 (2018)

Widmer, Gerhard, Kubat, Miroslav: Learning in the presence of concept drift and hidden contexts. Mach.
Learn. 23(1), 69–101 (1996)

Wilcoxon, Frank, Katti, S.K., Wilcox, Roberta A.: Critical values and probability levels for the wilcoxon
rank sum test and the wilcoxon signed rank T. Select. Tab. Math. Stat. 1, 171–259 (1970)

Xia, Yufei, Liu, Chuanzhe, Li, YuYing, Liu, Nana: A boosted decision tree approach using bayesian
hyper-parameter optimization for credit scoring. Expert Syst. Appl. 78, 225–241 (2017)

Xia, Jing, Li, Yanhui: Could we predict the result of a continuous integration build? an empirical study.
In: IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-
C), 311–315, (2017)

Xia, Jing, Li, Yanhui, Wang, Chuanqi: An empirical study on the cross-project predictability of continu-
ous integration outcomes. In: 14th Web Information Systems and Applications Conference (WISA),
234–239. IEEE, (2017a)

Xie, Zheng, Li, Ming: Cutting the software building efforts in continuous integration by semi-supervised
online auc optimization. In IJCAI, 2875–2881 (2018)

Yang, Li., Shami, Abdallah: On hyperparameter optimization of machine learning algorithms: Theory
and practice. Neurocomputing 415, 295–316 (2020)

Zenisek, Jan, Holzinger, Florian, Affenzeller, Michael: Machine learning based concept drift detection
for predictive maintenance. Comput. Indus. Eng. 137, 106031 (2019)

Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E.: Cross-project defect prediction using a connectivity-based
unsupervised classifier. In: 2016 IEEE/ACM 38th International Conference on Software Engineer-
ing (ICSE). IEEE, 309–320 (2016)

Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B.: The impact of continuous integration on
other software development practices: A large-scale empirical study. In: 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 60–71 (2017)

Zheng, Jun: Cost-sensitive boosting neural networks for software defect prediction. Expert Syst. Appl.
37(6), 4537–4543 (2010)

Zhou, Zhi-Hua., Liu, Xu-Ying.: Training cost-sensitive neural networks with methods addressing the
class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Automated Software Engineering (2022) 29:21 Page 61 of 61 21

Authors and Affiliations

Islem Saidani1 · Ali Ouni1 · Mohamed Wiem Mkaouer2

 * Ali Ouni
 ali.ouni@etsmtl.ca

 Islem Saidani
 islem.saidani.1@ens.etsmtl.ca

 Mohamed Wiem Mkaouer
 mwmvse@rit.edu

1 ETS Montreal, University of Quebec, Montreal, Canada
2 Rochester Institute of Technology, Rochester, USA

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

